Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 18 Jan 2024]
Title:ASA -- The Adaptive Scheduling Algorithm
View PDF HTML (experimental)Abstract:In High Performance Computing (HPC) infrastructures, the control of resources by batch systems can lead to prolonged queue waiting times and adverse effects on the overall execution times of applications, particularly in data-intensive and low-latency workflows where efficient processing hinges on resource planning and timely allocation. Allocating the maximum capacity upfront ensures the fastest execution but results in spare and idle resources, extended queue waits, and costly usage. Conversely, dynamic allocation based on workflow stage requirements optimizes resource usage but may negatively impact the total workflow makespan. To address these issues, we introduce ASA, the Adaptive Scheduling Algorithm. ASA is a novel, convergence-proven scheduling technique that minimizes jobs inter-stage waiting times by estimating the queue waiting times to proactively submit resource change requests ahead of time. It strikes a balance between exploration and exploitation, considering both learning (waiting times) and applying learnt insights. Real-world experiments over two supercomputers centers with scientific workflows demonstrate ASA's effectiveness, achieving near-optimal resource utilization and accuracy, with up to 10% and 2% reductions in average workflow queue waiting times and makespan, respectively.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.