Computer Science > Computer Vision and Pattern Recognition
[Submitted on 20 Dec 2023]
Title:CRD: Collaborative Representation Distance for Practical Anomaly Detection
View PDF HTML (experimental)Abstract:Visual defect detection plays an important role in intelligent industry. Patch based methods consider visual images as a collection of image patches according to positions, which have stronger discriminative ability for small defects in products, e.g. scratches on pills. However, the nearest neighbor search for the query image and the stored patches will occupy $O(n)$ complexity in terms of time and space requirements, posing strict challenges for deployment in edge environments. In this paper, we propose an alternative approach to the distance calculation of image patches via collaborative representation models. Starting from the nearest neighbor distance with $L_0$ constraint, we relax the constraint to $L_2$ constraint and solve the distance quickly in close-formed without actually accessing the original stored collection of image patches. Furthermore, we point out that the main computational burden of this close-formed solution can be pre-computed by high-performance server before deployment. Consequently, the distance calculation on edge devices only requires a simple matrix multiplication, which is extremely lightweight and GPU-friendly. Performance on real industrial scenarios demonstrates that compared to the existing state-of-the-art methods, this distance achieves several hundred times improvement in computational efficiency with slight performance drop, while greatly reducing memory overhead.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.