Computer Science > Neural and Evolutionary Computing
[Submitted on 21 Dec 2023 (v1), last revised 10 Oct 2024 (this version, v2)]
Title:Multimodal Optimization with k-Cluster Big Bang-Big Crunch Algorithm and Postprocessing Methods for Identification and Quantification of Optima
View PDF HTML (experimental)Abstract:Multimodal optimization is often encountered in engineering problems, especially when different and alternative solutions are sought. Evolutionary algorithms can efficiently tackle multimodal optimization thanks to their features such as the concept of population, exploration/exploitation, and being suitable for parallel computation. This paper investigates whether a less-known optimizer, the Big Bang-Big Crunch (BBBC) algorithm, is suitable for multimodal optimization. We extended BBBC and propose k-BBBC, a clustering-based multi-modal optimizer. Additionally, we introduce two post-processing methods to (i) identify the local optima in a set of retrieved solutions (i.e., a population), and (ii) quantify the number of correctly retrieved optima against the expected ones (i.e., success rate). Our results show that k-BBBC performs well even with problems having a large number of optima (tested on $379$ optima) and high dimensionality (tested on $32$ decision variables), but it becomes computationally too expensive for problems with many local optima (i.e., in the CEC'2013 benchmark set). Compared to other multimodal optimization methods, it outperforms them in terms of accuracy (in both search and objective space) and success rate (number of correctly retrieved optima) when tested on basic multimodal functions, especially when elitism is applied; however, it requires knowing the number of optima of a problem, which makes its performance decrease when tested on niching competition test CEC'2013. Lastly, we validated our proposed post-processing methods by comparing their success rate to the actual one: results suggest that these methods can be used to evaluate the performance of a multimodal optimization algorithm by correctly identifying optima and providing an indication of success -- without the need to know where the optima are located in the search space.
Submission history
From: Fabio Stroppa [view email][v1] Thu, 21 Dec 2023 06:16:32 UTC (20,466 KB)
[v2] Thu, 10 Oct 2024 16:16:15 UTC (31,047 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.