Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Jan 2024 (v1), last revised 15 Apr 2024 (this version, v2)]
Title:Text-Driven Traffic Anomaly Detection with Temporal High-Frequency Modeling in Driving Videos
View PDF HTML (experimental)Abstract:Traffic anomaly detection (TAD) in driving videos is critical for ensuring the safety of autonomous driving and advanced driver assistance systems. Previous single-stage TAD methods primarily rely on frame prediction, making them vulnerable to interference from dynamic backgrounds induced by the rapid movement of the dashboard camera. While two-stage TAD methods appear to be a natural solution to mitigate such interference by pre-extracting background-independent features (such as bounding boxes and optical flow) using perceptual algorithms, they are susceptible to the performance of first-stage perceptual algorithms and may result in error propagation. In this paper, we introduce TTHF, a novel single-stage method aligning video clips with text prompts, offering a new perspective on traffic anomaly detection. Unlike previous approaches, the supervised signal of our method is derived from languages rather than orthogonal one-hot vectors, providing a more comprehensive representation. Further, concerning visual representation, we propose to model the high frequency of driving videos in the temporal domain. This modeling captures the dynamic changes of driving scenes, enhances the perception of driving behavior, and significantly improves the detection of traffic anomalies. In addition, to better perceive various types of traffic anomalies, we carefully design an attentive anomaly focusing mechanism that visually and linguistically guides the model to adaptively focus on the visual context of interest, thereby facilitating the detection of traffic anomalies. It is shown that our proposed TTHF achieves promising performance, outperforming state-of-the-art competitors by +5.4% AUC on the DoTA dataset and achieving high generalization on the DADA dataset.
Submission history
From: Rongqin Liang [view email][v1] Sun, 7 Jan 2024 15:47:19 UTC (16,762 KB)
[v2] Mon, 15 Apr 2024 07:59:03 UTC (24,914 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.