Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 7 Jan 2024]
Title:EAT: Self-Supervised Pre-Training with Efficient Audio Transformer
View PDF HTML (experimental)Abstract:Audio self-supervised learning (SSL) pre-training, which aims to learn good representations from unlabeled audio, has made remarkable progress. However, the extensive computational demands during pre-training pose a significant barrier to the potential application and optimization of audio SSL models. In this paper, inspired by the success of data2vec 2.0 in image modality and Audio-MAE in audio modality, we introduce Efficient Audio Transformer (EAT) to further improve the effectiveness and efficiency in audio SSL. The proposed EAT adopts the bootstrap self-supervised training paradigm to the audio domain. A novel Utterance-Frame Objective (UFO) is designed to enhance the modeling capability of acoustic events. Furthermore, we reveal that the masking strategy is critical in audio SSL pre-training, and superior audio representations can be obtained with large inverse block masks. Experiment results demonstrate that EAT achieves state-of-the-art (SOTA) performance on a range of audio-related tasks, including AudioSet (AS-2M, AS-20K), ESC-50, and SPC-2, along with a significant pre-training speedup up to ~15x compared to existing audio SSL models.
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.