Electrical Engineering and Systems Science > Systems and Control
[Submitted on 2 Jan 2024]
Title:Identification of Secondary Resonances of Nonlinear Systems using Phase-Locked Loop Testing
View PDF HTML (experimental)Abstract:One unique feature of nonlinear dynamical systems is the existence of superharmonic and subharmonic resonances in addition to primary resonances. In this study, an effective vibration testing methodology is introduced for the experimental identification of these secondary resonances. The proposed method relies on phase-locked loop control combined with adaptive filters for online Fourier decomposition. To this end, the concept of a resonant phase lag is exploited to define the target phase lag to be followed during the experimental continuation process. The method is demonstrated using two systems featuring cubic nonlinearities, namely a numerical Duffing oscillator and a physical experiment comprising a clamped-clamped thin beam. The obtained results highlight that the control scheme can accurately characterize secondary resonances as well as track their backbone curves. A particularly salient feature of the developed algorithm is that, starting from the rest position, it facilitates an automatic and smooth dynamic state transfer toward one point of a subharmonic isolated branch, hence, inducing branch switching.
Current browse context:
eess.SY
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.