Computer Science > Robotics
[Submitted on 2 Jan 2024 (v1), last revised 5 Jan 2024 (this version, v2)]
Title:PLE-SLAM: A Visual-Inertial SLAM Based on Point-Line Features and Efficient IMU Initialization
View PDF HTML (experimental)Abstract:Visual-inertial SLAM is crucial in various fields, such as aerial vehicles, industrial robots, and autonomous driving. The fusion of camera and inertial measurement unit (IMU) makes up for the shortcomings of a signal sensor, which significantly improves the accuracy and robustness of localization in challenging environments. This article presents PLE-SLAM, an accurate and real-time visual-inertial SLAM algorithm based on point-line features and efficient IMU initialization. First, we use parallel computing methods to extract features and compute descriptors to ensure real-time performance. Adjacent short line segments are merged into long line segments, and isolated short line segments are directly deleted. Second, a rotation-translation-decoupled initialization method is extended to use both points and lines. Gyroscope bias is optimized by tightly coupling IMU measurements and image observations. Accelerometer bias and gravity direction are solved by an analytical method for efficiency. To improve the system's intelligence in handling complex environments, a scheme of leveraging semantic information and geometric constraints to eliminate dynamic features and A solution for loop detection and closed-loop frame pose estimation using CNN and GNN are integrated into the system. All networks are accelerated to ensure real-time performance. The experiment results on public datasets illustrate that PLE-SLAM is one of the state-of-the-art visual-inertial SLAM systems.
Submission history
From: Jiaming He [view email][v1] Tue, 2 Jan 2024 07:54:40 UTC (1,368 KB)
[v2] Fri, 5 Jan 2024 12:01:37 UTC (1,368 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.