Mathematics > Algebraic Geometry
[Submitted on 29 Dec 2023 (v1), last revised 10 May 2024 (this version, v2)]
Title:Conditions for eigenvalue configurations of two real symmetric matrices: a signature approach
View PDF HTML (experimental)Abstract:For two real symmetric matrices, their eigenvalue configuration is the arrangement of their eigenvalues on the real line. In this paper, we provide quantifier-free necessary and sufficient conditions for two symmetric matrices to realize a given eigenvalue configuration. The basic idea is to generate a set of polynomials in the entries of the two matrices whose roots can be counted to uniquely determine the eigenvalue configuration. This result can be seen as ageneralization of Descartes' rule of signs to the case of two real univariate polynomials.
Submission history
From: Daniel Profili [view email][v1] Fri, 29 Dec 2023 22:24:29 UTC (13 KB)
[v2] Fri, 10 May 2024 14:45:59 UTC (13 KB)
Current browse context:
math.AG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.