Computer Science > Computation and Language
[Submitted on 16 Dec 2019]
Title:Graph-based Neural Sentence Ordering
View PDFAbstract:Sentence ordering is to restore the original paragraph from a set of sentences. It involves capturing global dependencies among sentences regardless of their input order. In this paper, we propose a novel and flexible graph-based neural sentence ordering model, which adopts graph recurrent network \cite{Zhang:acl18} to accurately learn semantic representations of the sentences. Instead of assuming connections between all pairs of input sentences, we use entities that are shared among multiple sentences to make more expressive graph representations with less noise. Experimental results show that our proposed model outperforms the existing state-of-the-art systems on several benchmark datasets, demonstrating the effectiveness of our model. We also conduct a thorough analysis on how entities help the performance.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.