Computer Science > Software Engineering
[Submitted on 30 Oct 2019]
Title:Software defect prediction with zero-inflated Poisson models
View PDFAbstract:In this work we apply several Poisson and zero-inflated models for software defect prediction. We apply different functions from several R packages such as pscl, MASS, R2Jags and the recent glmmTMB. We test the functions using the Equinox dataset. The results show that Zero-inflated models, fitted with either maximum likelihood estimation or with Bayesian approach, are slightly better than other models, using the AIC as selection criterion.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.