Computer Science > Machine Learning
[Submitted on 7 Oct 2019]
Title:Irregular Convolutional Auto-Encoder on Point Clouds
View PDFAbstract:We proposed a novel graph convolutional neural network that could construct a coarse, sparse latent point cloud from a dense, raw point cloud. With a novel non-isotropic convolution operation defined on irregular geometries, the model then can reconstruct the original point cloud from this latent cloud with fine details. Furthermore, we proposed that it is even possible to perform particle simulation using the latent cloud encoded from some simulated particle cloud (e.g. fluids), to accelerate the particle simulation process. Our model has been tested on ShapeNetCore dataset for Auto-Encoding with a limited latent dimension and tested on a synthesis dataset for fluids simulation. We also compare the model with other state-of-the-art models, and several visualizations were done to intuitively understand the model.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.