Computer Science > Artificial Intelligence
[Submitted on 2 Jul 2019]
Title:Visual analytics for team-based invasion sports with significant events and Markov reward process
View PDFAbstract:In team-based invasion sports such as soccer and basketball, analytics is important for teams to understand their performance and for audiences to understand matches better. The present work focuses on performing visual analytics to evaluate the value of any kind of event occurring in a sports match with a continuous parameter space. Here, the continuous parameter space involves the time, location, score, and other parameters. Because the spatiotemporal data used in such analytics is a low-level representation and has a very large size, however, traditional analytics may need to discretize the continuous parameter space (e.g., subdivide the playing area) or use a local feature to limit the analysis to specific events (e.g., only shots). These approaches make evaluation impossible for any kind of event with a continuous parameter space. To solve this problem, we consider a whole match as a Markov chain of significant events, so that event values can be estimated with a continuous parameter space by solving the Markov chain with a machine learning model. The significant events are first extracted by considering the time-varying distribution of players to represent the whole match. Then, the extracted events are redefined as different states with the continuous parameter space and built as a Markov chain so that a Markov reward process can be applied. Finally, the Markov reward process is solved by a customized fitted-value iteration algorithm so that the event values with the continuous parameter space can be predicted by a regression model. As a result, the event values can be visually inspected over the whole playing field under arbitrary given conditions. Experimental results with real soccer data show the effectiveness of the proposed system.
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.