Computer Science > Hardware Architecture
[Submitted on 27 Jun 2019 (v1), last revised 12 Jul 2019 (this version, v3)]
Title:Mixed-Signal Charge-Domain Acceleration of Deep Neural networks through Interleaved Bit-Partitioned Arithmetic
View PDFAbstract:Low-power potential of mixed-signal design makes it an alluring option to accelerate Deep Neural Networks (DNNs). However, mixed-signal circuitry suffers from limited range for information encoding, susceptibility to noise, and Analog to Digital (A/D) conversion overheads. This paper aims to address these challenges by offering and leveraging the insight that a vector dot-product (the basic operation in DNNs) can be bit-partitioned into groups of spatially parallel low-bitwidth operations, and interleaved across multiple elements of the vectors. As such, the building blocks of our accelerator become a group of wide, yet low-bitwidth multiply-accumulate units that operate in the analog domain and share a single A/D converter. The low-bitwidth operation tackles the encoding range limitation and facilitates noise mitigation. Moreover, we utilize the switched-capacitor design for our bit-level reformulation of DNN operations. The proposed switched-capacitor circuitry performs the group multiplications in the charge domain and accumulates the results of the group in its capacitors over multiple cycles. The capacitive accumulation combined with wide bit-partitioned operations alleviate the need for A/D conversion per operation. With such mathematical reformulation and its switched-capacitor implementation, we define a 3D-stacked microarchitecture, dubbed BIHIWE.
Submission history
From: Soroush Ghodrati [view email][v1] Thu, 27 Jun 2019 19:09:31 UTC (2,332 KB)
[v2] Tue, 9 Jul 2019 16:14:50 UTC (2,332 KB)
[v3] Fri, 12 Jul 2019 17:03:50 UTC (2,332 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.