Computer Science > Machine Learning
[Submitted on 12 Jan 2019 (v1), last revised 30 Aug 2019 (this version, v4)]
Title:Multiplayer Multi-armed Bandits for Optimal Assignment in Heterogeneous Networks
View PDFAbstract:We consider an ad hoc network where multiple users access the same set of channels. The channel characteristics are unknown and could be different for each user (heterogeneous). No controller is available to coordinate channel selections by the users, and if multiple users select the same channel, they collide and none of them receive any rate (or reward). For such a completely decentralized network we develop algorithms that aim to achieve optimal network throughput. Due to lack of any direct communication between the users, we allow each user to exchange information by transmitting in a specific pattern and sense such transmissions from others. However, such transmissions and sensing for information exchange do not add to network throughput. For the wideband sensing and narrowband sensing scenarios, we first develop explore-and-commit algorithms that converge to near-optimal allocation with high probability in a small number of rounds. Building on this, we develop an algorithm that gives logarithmic regret, even when the number of users changes with time. We validate our claims through extensive experiments and show that our algorithms perform significantly better than the state-of-the-art CSM-MAB, dE3 and dE3-TS algorithms.
Submission history
From: Manjesh Kumar Hanawal [view email][v1] Sat, 12 Jan 2019 14:30:57 UTC (1,604 KB)
[v2] Tue, 9 Apr 2019 13:03:57 UTC (443 KB)
[v3] Thu, 15 Aug 2019 11:10:48 UTC (453 KB)
[v4] Fri, 30 Aug 2019 03:59:20 UTC (495 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.