Computer Science > Machine Learning
[Submitted on 8 Dec 2018 (v1), last revised 14 Jan 2020 (this version, v2)]
Title:Multi-Dimensional Scaling on Groups
View PDFAbstract:Leveraging the intrinsic symmetries in data for clear and efficient analysis is an important theme in signal processing and other data-driven sciences. A basic example of this is the ubiquity of the discrete Fourier transform which arises from translational symmetry (i.e. time-delay/phase-shift). Particularly important in this area is understanding how symmetries inform the algorithms that we apply to our data. In this paper we explore the behavior of the dimensionality reduction algorithm multi-dimensional scaling (MDS) in the presence of symmetry. We show that understanding the properties of the underlying symmetry group allows us to make strong statements about the output of MDS even before applying the algorithm itself. In analogy to Fourier theory, we show that in some cases only a handful of fundamental "frequencies" (irreducible representations derived from the corresponding group) contribute information for the MDS Euclidean embedding.
Submission history
From: Henry Kvinge [view email][v1] Sat, 8 Dec 2018 18:15:22 UTC (62 KB)
[v2] Tue, 14 Jan 2020 05:57:21 UTC (221 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.