Computer Science > Computational Engineering, Finance, and Science
[Submitted on 18 Sep 2018 (v1), last revised 15 Apr 2019 (this version, v4)]
Title:Shouji: A Fast and Efficient Pre-Alignment Filter for Sequence Alignment
View PDFAbstract:Motivation: The ability to generate massive amounts of sequencing data continues to overwhelm the processing capability of existing algorithms and compute infrastructures. In this work, we explore the use of hardware/software co-design and hardware acceleration to significantly reduce the execution time of short sequence alignment, a crucial step in analyzing sequenced genomes. We introduce Shouji, a highly-parallel and accurate pre-alignment filter that remarkably reduces the need for computationally-costly dynamic programming algorithms. The first key idea of our proposed pre-alignment filter is to provide high filtering accuracy by correctly detecting all common subsequences shared between two given sequences. The second key idea is to design a hardware accelerator that adopts modern FPGA (Field-Programmable Gate Array) architectures to further boost the performance of our algorithm.
Results: Shouji significantly improves the accuracy of pre-alignment filtering by up to two orders of magnitude compared to the state-of-the-art pre-alignment filters, GateKeeper and SHD. Our FPGA-based accelerator is up to three orders of magnitude faster than the equivalent CPU implementation of Shouji. Using a single FPGA chip, we benchmark the benefits of integrating Shouji with five state-of-the-art sequence aligners, designed for different computing platforms. The addition of Shouji as a pre-alignment step reduces the execution time of the five state-of-the-art sequence aligners by up to 18.8x. Shouji can be adapted for any bioinformatics pipeline that performs sequence alignment for verification. Unlike most existing methods that aim to accelerate sequence alignment, Shouji does not sacrifice any of the aligner capabilities, as it does not modify or replace the alignment step.
Availability: this https URL
Submission history
From: Mohammed Alser [view email][v1] Tue, 18 Sep 2018 16:38:32 UTC (2,226 KB)
[v2] Thu, 27 Dec 2018 20:53:34 UTC (2,968 KB)
[v3] Wed, 27 Mar 2019 09:49:52 UTC (1,473 KB)
[v4] Mon, 15 Apr 2019 14:43:18 UTC (1,482 KB)
Current browse context:
cs.CE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.