Statistics > Applications
[Submitted on 15 Sep 2018 (v1), last revised 25 Jan 2024 (this version, v4)]
Title:Mitigating Included- and Omitted-Variable Bias in Estimates of Disparate Impact
View PDF HTML (experimental)Abstract:Managers, employers, policymakers, and others often seek to understand whether decisions are biased against certain groups. One popular analytic strategy is to estimate disparities after adjusting for observed covariates, typically with a regression model. This approach, however, suffers from two key statistical challenges. First, omitted-variable bias can skew results if the model does not adjust for all relevant factors; second, and conversely, included-variable bias -- a lesser-known phenomenon -- can skew results if the set of covariates includes irrelevant factors. Here we introduce a new, three-step statistical method, which we call risk-adjusted regression, to address both concerns in settings where decision makers have clearly measurable objectives. In the first step, we use all available covariates to estimate the value, or inversely, the risk, of taking a certain action, such as approving a loan application or hiring a job candidate. Second, we measure disparities in decisions after adjusting for these risk estimates alone, mitigating the problem of included-variable bias. Finally, in the third step, we assess the sensitivity of results to potential mismeasurement of risk, addressing concerns about omitted-variable bias. To do so, we develop a novel, non-parametric sensitivity analysis that yields tight bounds on the true disparity in terms of the average gap between true and estimated risk -- a single interpretable parameter that facilitates credible estimates. We demonstrate this approach on a detailed dataset of 2.2 million police stops of pedestrians in New York City, and show that traditional statistical tests of discrimination can substantially underestimate the magnitude of disparities.
Submission history
From: Johann Gaebler [view email][v1] Sat, 15 Sep 2018 05:12:49 UTC (528 KB)
[v2] Thu, 4 Oct 2018 23:37:51 UTC (983 KB)
[v3] Thu, 29 Aug 2019 05:01:04 UTC (216 KB)
[v4] Thu, 25 Jan 2024 19:21:02 UTC (422 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.