Computer Science > Machine Learning
[Submitted on 22 Jun 2018 (v1), last revised 22 Jan 2019 (this version, v3)]
Title:Continuous Learning in Single-Incremental-Task Scenarios
View PDFAbstract:It was recently shown that architectural, regularization and rehearsal strategies can be used to train deep models sequentially on a number of disjoint tasks without forgetting previously acquired knowledge. However, these strategies are still unsatisfactory if the tasks are not disjoint but constitute a single incremental task (e.g., class-incremental learning). In this paper we point out the differences between multi-task and single-incremental-task scenarios and show that well-known approaches such as LWF, EWC and SI are not ideal for incremental task scenarios. A new approach, denoted as AR1, combining architectural and regularization strategies is then specifically proposed. AR1 overhead (in term of memory and computation) is very small thus making it suitable for online learning. When tested on CORe50 and iCIFAR-100, AR1 outperformed existing regularization strategies by a good margin.
Submission history
From: Vincenzo Lomonaco [view email][v1] Fri, 22 Jun 2018 09:22:42 UTC (3,477 KB)
[v2] Tue, 28 Aug 2018 11:13:40 UTC (3,477 KB)
[v3] Tue, 22 Jan 2019 21:49:25 UTC (3,026 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.