Computer Science > Computational Complexity
[Submitted on 20 Apr 2017]
Title:Settling the query complexity of non-adaptive junta testing
View PDFAbstract:We prove that any non-adaptive algorithm that tests whether an unknown Boolean function $f: \{0, 1\}^n\to \{0, 1\}$ is a $k$-junta or $\epsilon$-far from every $k$-junta must make $\widetilde{\Omega}(k^{3/2} / \epsilon)$ many queries for a wide range of parameters $k$ and $\epsilon$. Our result dramatically improves previous lower bounds from [BGSMdW13, STW15], and is essentially optimal given Blais's non-adaptive junta tester from [Blais08], which makes $\widetilde{O}(k^{3/2})/\epsilon$ queries. Combined with the adaptive tester of [Blais09] which makes $O(k\log k + k /\epsilon)$ queries, our result shows that adaptivity enables polynomial savings in query complexity for junta testing.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.