Quantitative Biology > Genomics
[Submitted on 25 Sep 2015 (v1), last revised 8 Mar 2017 (this version, v4)]
Title:Algorithmic Methods to Infer the Evolutionary Trajectories in Cancer Progression
View PDFAbstract:The genomic evolution inherent to cancer relates directly to a renewed focus on the voluminous next generation sequencing (NGS) data, and machine learning for the inference of explanatory models of how the (epi)genomic events are choreographed in cancer initiation and development. However, despite the increasing availability of multiple additional -omics data, this quest has been frustrated by various theoretical and technical hurdles, mostly stemming from the dramatic heterogeneity of the disease. In this paper, we build on our recent works on "selective advantage" relation among driver mutations in cancer progression and investigate its applicability to the modeling problem at the population level. Here, we introduce PiCnIc (Pipeline for Cancer Inference), a versatile, modular and customizable pipeline to extract ensemble-level progression models from cross-sectional sequenced cancer genomes. The pipeline has many translational implications as it combines state-of-the-art techniques for sample stratification, driver selection, identification of fitness-equivalent exclusive alterations and progression model inference. We demonstrate PiCnIc's ability to reproduce much of the current knowledge on colorectal cancer progression, as well as to suggest novel experimentally verifiable hypotheses.
Submission history
From: Daniele Ramazzotti [view email][v1] Fri, 25 Sep 2015 23:01:37 UTC (8,783 KB)
[v2] Tue, 6 Oct 2015 15:13:30 UTC (8,772 KB)
[v3] Thu, 19 May 2016 17:49:26 UTC (29,399 KB)
[v4] Wed, 8 Mar 2017 21:08:33 UTC (29,399 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.