Computer Science > Cryptography and Security
[Submitted on 1 May 2015]
Title:Non-Malleable Extractors and Codes, with their Many Tampered Extensions
View PDFAbstract:Randomness extractors and error correcting codes are fundamental objects in computer science. Recently, there have been several natural generalizations of these objects, in the context and study of tamper resilient cryptography. These are seeded non-malleable extractors, introduced in [DW09]; seedless non-malleable extractors, introduced in [CG14b]; and non-malleable codes, introduced in [DPW10].
However, explicit constructions of non-malleable extractors appear to be hard, and the known constructions are far behind their non-tampered counterparts.
In this paper we make progress towards solving the above problems. Our contributions are as follows.
(1) We construct an explicit seeded non-malleable extractor for min-entropy $k \geq \log^2 n$. This dramatically improves all previous results and gives a simpler 2-round privacy amplification protocol with optimal entropy loss, matching the best known result in [Li15b].
(2) We construct the first explicit non-malleable two-source extractor for min-entropy $k \geq n-n^{\Omega(1)}$, with output size $n^{\Omega(1)}$ and error $2^{-n^{\Omega(1)}}$.
(3) We initiate the study of two natural generalizations of seedless non-malleable extractors and non-malleable codes, where the sources or the codeword may be tampered many times. We construct the first explicit non-malleable two-source extractor with tampering degree $t$ up to $n^{\Omega(1)}$, which works for min-entropy $k \geq n-n^{\Omega(1)}$, with output size $n^{\Omega(1)}$ and error $2^{-n^{\Omega(1)}}$. We show that we can efficiently sample uniformly from any pre-image. By the connection in [CG14b], we also obtain the first explicit non-malleable codes with tampering degree $t$ up to $n^{\Omega(1)}$, relative rate $n^{\Omega(1)}/n$, and error $2^{-n^{\Omega(1)}}$.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.