Astrophysics > Astrophysics of Galaxies
[Submitted on 2 Mar 2015]
Title:The Role of Bulge Formation in the Homogenization of Stellar Populations at $z\sim2$ as revealed by Internal Color Dispersion in CANDELS
View PDFAbstract:We use data from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey to study how the spatial variation in the stellar populations of galaxies relate to the formation of galaxies at $1.5 < z < 3.5$. We use the Internal Color Dispersion (ICD), measured between the rest-frame UV and optical bands, which is sensitive to age (and dust attenuation) variations in stellar populations. The ICD shows a relation with the stellar masses and morphologies of the galaxies. Galaxies with the largest variation in their stellar populations as evidenced by high ICD have disk-dominated morphologies (with Sérsic indexes $< 2$) and stellar masses between $10 < \mathrm{Log~M/ M_\odot}< 11$. There is a marked decrease in the ICD as the stellar mass and/or the Sérsic index increases. By studying the relations between the ICD and other galaxy properties including sizes, total colors, star-formation rate, and dust attenuation, we conclude that the largest variations in stellar populations occur in galaxies where the light from newly, high star-forming clumps contrasts older stellar disk populations. This phase reaches a peak for galaxies only with a specific stellar mass range, $10 < \mathrm{Log~M/ M_\odot} < 11$, and prior to the formation of a substantial bulge/spheroid. In contrast, galaxies at higher or lower stellar masses, and/or higher Sérsic index ($n > 2$) show reduced ICD values, implying a greater homogeneity of their stellar populations. This indicates that if a galaxy is to have both a quiescent bulge along with a star forming disk, typical of Hubble Sequence galaxies, this is most common for stellar masses $10 < \mathrm{Log~M/M_\odot} < 11$ and when the bulge component remains relatively small ($n<2$).
Current browse context:
astro-ph.GA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.