Physics > Accelerator Physics
[Submitted on 16 Oct 2014 (v1), last revised 26 Jan 2015 (this version, v3)]
Title:Performance predictions of a focused ion beam from a laser cooled and compressed atomic beam
View PDFAbstract:Focused ion beams are indispensable tools in the semiconductor industry because of their ability to image and modify structures at the nanometer length scale. Here we report on performance predictions of a new type of focused ion beam based on photo-ionization of a laser cooled and compressed atomic beam. Particle tracing simulations are performed to investigate the effects of disorder-induced heating after ionization in a large electric field. They lead to a constraint on this electric field strength which is used as input for an analytical model which predicts the minimum attainable spot size as a function of amongst others the flux density of the atomic beam, the temperature of this beam and the total current. At low currents (I<10 pA) the spot size will be limited by a combination of spherical aberration and brightness, while at higher currents this is a combination of chromatic aberration and brightness. It is expected that a nanometer size spot is possible at a current of 1 pA. The analytical model was verified with particle tracing simulations of a complete focused ion beam setup. A genetic algorithm was used to find the optimum acceleration electric field as a function of the current. At low currents the result agrees well with the analytical model while at higher currents the spot sizes found are even lower due to effects that are not taken into account in the analytical model.
Submission history
From: Gijs ten Haaf [view email][v1] Thu, 16 Oct 2014 10:23:23 UTC (1,673 KB)
[v2] Fri, 17 Oct 2014 08:08:11 UTC (1,673 KB)
[v3] Mon, 26 Jan 2015 16:32:06 UTC (1,880 KB)
Current browse context:
physics.acc-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.