Computer Science > Logic in Computer Science
[Submitted on 15 Mar 2014 (v1), last revised 1 May 2018 (this version, v4)]
Title:Study of Behaviours via Visitable Paths
View PDFAbstract:Around 2000, J.-Y. Girard developed a logical theory, called Ludics. This theory was a step in his program of Geometry of Interaction, the aim of which being to account for the dynamics of logical proofs. In Ludics, objects called designs keep only what is relevant for the cut elimination process, hence the dynamics of a proof: a design is an abstraction of a formal proof. The notion of behaviour is the counterpart in Ludics of the notion of type or the logical notion of formula. Formally a behaviour is a closed set of designs. Our aim is to explore the constructions of behaviours and to analyse their properties. In this paper a design is viewed as a set of coherent paths. We recall or give variants of properties concerning visitable paths, where a visitable path is a path in a design or a set of designs that may be traversed by interaction with a design of the orthogonal of the set. We are then able to answer the following question: which properties should satisfy a set of paths for being exactly the set of visitable paths of a behaviour? Such a set and its dual should be prefix-closed, daimon-closed and satisfy two saturation properties. This allows us to have a means for defining the whole set of visitable paths of a given set of designs without closing it explicitly, that is without computing the orthogonal of this set of designs. We finally apply all these results for making explicit the structure of a behaviour generated by constants and multiplicative/additive connectives. We end by proposing an oriented tensor for which we give basic properties.
Submission history
From: Aleš Bizjak [view email] [via Logical Methods In Computer Science as proxy][v1] Sat, 15 Mar 2014 08:57:26 UTC (37 KB)
[v2] Sat, 8 Oct 2016 13:07:26 UTC (62 KB)
[v3] Wed, 12 Oct 2016 15:07:15 UTC (62 KB)
[v4] Tue, 1 May 2018 08:57:10 UTC (69 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.