RELIABILITY OF RSA ALGORITHM AND ITS COMPUTATIONAL COMPLEXITY

Authors

  • Mykola Karpinskyy
  • Yaroslav Kinakh

DOI:

https://doi.org/10.47839/ijc.2.3.241

Keywords:

Computer networks, RSA algorithm, encryption, number field sieve, factorization

Abstract

This article deals with the RSA encryption algorithm. Its safety is analyzed using the number field sieve method. The algorithm work results allow to define a define a secret key in a simple way.

References

R. L. Rivest, A. Shamir, L. Adleman. A method for obtaining digital signatures and public key cryptosystems, Commun. ACM. V.21. No 2. 1978. P. 120-126.

H. Riesel. Prime numbers and computer methods for factorization, Birkhauser, 1985.

H. Cohen. A course in computational algebraic number theory. GraduateTexts in Math. V. 138. New York, Springer, 1993.

A. K. Lenstra, H. W. Lenstra (jr.). The Development of the Number Field Sieve, Lect. Notes in Math. V. 1554. Springer, 1993.

M. Gardner. A new kind of cipher thet woud take millions of years to break, Sci. Amer. 1977. P. 120-124.

On line access: http://www.nfsnet.org/.

On line access: http://www.rsasecurity.com/.

P. Montgomery. Parallel Implementation of the Block-Lanczos Method, RSA-2000 Cryptographers Track.

R. Silverman, & S. Wagstaff Jr.. A Practical Analysis of the Elliptic Curve Factoring Method, Mathematics of Computation, vol. 61, 1993, pages [445-463].

A. Odlyzko. The Future of Integer Factorization, CryptoBytes 1 (1995) pp. 5-12.

R. Silverman, & S. Wagstaff Jr.. A Practical Analysis of the Elliptic Curve Factoring Method, Mathematics of Computation, vol. 61, 1993, pages [445-463].

Downloads

Published

2014-08-01

How to Cite

Karpinskyy, M., & Kinakh, Y. (2014). RELIABILITY OF RSA ALGORITHM AND ITS COMPUTATIONAL COMPLEXITY. International Journal of Computing, 2(3), 119-122. https://doi.org/10.47839/ijc.2.3.241

Issue

Section

Articles