Dynamic Cube Attacks against Grain-128AEAD
DOI:
https://doi.org/10.46586/tosc.v2024.i2.190-221Keywords:
Dynamic Cube Attacks, Division Property, MILP, Grain-128AEAD, Grain-128Abstract
In this paper, we revisit the division property based dynamic cube attack on the full Grain-128 presented by Hao et al. at FSE 2020 and demonstrate that their attack on the full Grain-128 is invalid, that is, no key information could be successfully recovered. The theoretical framework for the dynamic cube attack provided by Hao et al. is correct, but the technique for building the MILP model in the dynamic cube attack has flaws. Besides, strong evidence indicates that their bias estimation method is not applicable to Grain-128AEAD and Grain-128. Accordingly, we introduce the three-subset division property without unknown subset (3SDP/u) into dynamic cube attacks and present a correct MILP modeling technique. In addition, we propose a heuristic technique called Polynomial Approximation with regard to Bias (PAB) to evaluate the bias in superpolies in the dynamic cube attack, which can provide a more accurate bias evaluation for high-dimension cubes. As a result, we implemented the dynamic cube attack based on 3SDP/u on 190-round Grain-128AEAD, and we could recover 3 key bits with a complexity 2103.44 and the success probability was evaluated to be 99.68%. For Grain-128, some zero-sum distinguishers of cube size 80 are given for the first time.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Chen Liu, Tian Tian
This work is licensed under a Creative Commons Attribution 4.0 International License.