Human Response to Vehicle Vibrations and Acoustics during Transient Road Excitations
<p>Vehicle before driving over a falling edge of 30 mm [<a href="#B19-vibration-04-00023" class="html-bibr">19</a>].</p> "> Figure 2
<p>Representative vertical acceleration (filtered) at seat reference point in suspension mode normal (<b>Left</b>) and in suspension mode sport (<b>Right</b>) when driving over 30 mm falling edge with the rear wheels, visualized with Artemis Suite (HEAD acoustics).</p> "> Figure 3
<p>Representative sound pressure level at the driver’s ear, volume 1 (<b>Left</b>) and volume 2 (<b>Right</b>), when driving over 30 mm falling edge with the rear wheels; visualized with Artemis Suite (HEAD acoustics).</p> "> Figure 4
<p>Intensity perception of tactile impulses in the suspension mode normal (<b>Left</b>) and in the suspension mode sport (<b>Right</b>) for two volumes, rating scale ranging from 0 “not perceptible” to 5 “very strongly perceptible”.</p> "> Figure 5
<p>Intensity perception of audible impulses for volume 1 (<b>Left</b>) and for volume 2 (<b>Right</b>) in the two suspension modes normal and sport, rating scale ranging from 0 “not perceptible” to 5 “very strongly perceptible”.</p> "> Figure A1
<p>Sound reproduction unit.</p> ">
Abstract
:1. Introduction
2. Methodology and Test Design
3. Results
3.1. Influence of Audible Impulses on the Intensity Perception of Tactile Impulses
3.2. Influence of Tactile Impulses on the Perception of Audible Impulses
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A | A-weighting |
dB | Decibel |
f | Frequency |
Hz | Hertz |
IQR | Interquartile range |
N | Suspension mode Normal |
NVH | Noise, Vibration, Harshness |
S | Suspension mode Sport |
SD | Standard deviation |
SPL | Sound pressure level |
T | Impulse duration |
Appendix A. Figures and Tables
Figure | 4 (Left) | 4 (Left) | 4 (Right) | 4 (Right) |
---|---|---|---|---|
Variant | Volume 1 | Volume 2 | Volume 1 | Volume 2 |
Mean | 2.6 | 2.6 | 3.6 | 3.5 |
Standard deviation | 0.7 | 0.7 | 0.9 | 0.9 |
Median value | 2.5 | 2.3 | 3.8 | 3.8 |
Upper quartile | 3.3 | 3.1 | 4.3 | 4.0 |
Lower quartile | 2.0 | 2.1 | 2.9 | 2.5 |
IQR | 1.3 | 1.0 | 1.4 | 1.5 |
Figure | 5 (Left) | 5 (Left) | 5 (Right) | 5 (Right) |
---|---|---|---|---|
Variant | Normal | Sport | Normal | Sport |
Mean | 1.7 | 1.9 | 2.7 | 2.6 |
Standard deviation | 0.7 | 0.8 | 0.7 | 0.7 |
Median value | 1.7 | 1.8 | 2.7 | 2.8 |
Upper quartile | 1.8 | 2.0 | 3.2 | 3.0 |
Lower quartile | 1.3 | 1.5 | 2.3 | 2.1 |
IQR | 0.5 | 0.5 | 0.8 | 0.9 |
d | Interpretation Acc. to Cohen [20] |
---|---|
<0 | Negative effect |
0.0 | No effect |
0.1 | |
0.2 | Minor effect |
0.3 | |
0.4 | |
0.5 | Average effect |
0.6 | |
0.7 | |
0.8 | Major effect |
0.9 | |
≥1.0 |
Appendix B
References
- Genuit, K. Vehicle Interior Noise—Combination of Sound, Vibration and Interactivity. Sound Vib. 2009, 43, 8–12. [Google Scholar]
- Fülbier, K.-P. Systemansatz zur Untersuchung und Beurteilung des Abrollkomforts von Kraftfahrzeugen bei Überfahrt von Einzelhindernissen. Ph.D. Thesis, Technische Hochschule Aachen, Aachen, Germany, 2001. [Google Scholar]
- Bellmann, M.A. Perception of Whole-Body Vibrations: From Basic Experiments to Effects of Seat and Steering-Wheel Vibrations on the Passenger’s Comfort Inside Vehicles; Dissertation Uni Oldenburg; Shaker Verlag GmbH: Düren, Germany, 2002; ISBN 978-3832208578. [Google Scholar]
- Sköld, M. Vibration Influence on Product Sound Quality in Cars. Forum Akust. 2005, 5, 1731–1734. [Google Scholar]
- Amman, S.; Mouch, T.; Meier, R.; Gu, P. Sound and vibration perceptual contributions during vehicle transient and steady-state road input. Int. J. Veh. Noise Vib. 2007, 3, 157–171. [Google Scholar] [CrossRef]
- Fleming, D.B.; Griffin, M.J. A study of the subjective equivalence of noise and whole-body vibration. J. Sound Vib. 1975, 42, 453–461. [Google Scholar] [CrossRef]
- Amman, S.; Meier, R.; Mouch, T.; Gu, P. A Survey of Sound and Vibration Interaction; SAE Techical Paper Series No. 2005-01-2472; SAE International: Warrendale, PA, USA, 2005. [Google Scholar]
- Howarth, H.V.; Griffin, M.J. Subjective response to combined noise and vibration: Summation and interaction effects. J. Sound Vib. 1990, 147, 443–454. [Google Scholar] [CrossRef]
- Howarth, H.V.; Griffin, M.J. The annoyance caused by simultaneous noise and vibration from railways. J. Acoust. Soc. Am. 1991, 89, 2317–2323. [Google Scholar] [CrossRef]
- Miwa, T.; Yonekawa, Y. Measurement and evaluation of environmental vibrations Part2: Interaction of sound and vibration. Ind. Health 1973, 11, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Dempsey, T.; Leatherwood, J.; Drezek, A. Development of noise and vibration ride comfort criteria. J. Acoust. Soc. Am. 1979, 65, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Leatherwood, J.; Clevenson, S.; Stephens, D. The development of interior noise and vibration criteria. In NASA Technical Memorandum 102736; NASA: Washington, DC, USA, 1990. [Google Scholar]
- Ingvarsson, A.; Vastfjall, D. A study on the human response to aircraft vibrations in flight. In Proceedings of the 5th AIAA/CEAS Aeroacoustics Conference and Exhibit, Bellevue, WA, USA, 10–12 May 1999. [Google Scholar]
- Vastfjall, D.; Larsson, P.; Kleiner, M. Cross-modal interaction in sound quality evaluation: Some experiments using the virtual aircraft. Internoise Sound Qual. Symp. Proc. 2002, 2002, 24–28. [Google Scholar]
- Amman, S.; Gu, P.; Mouch, T.; Greenberg, J. Sound and Vibration Contributions to the Perception of Impact Harshness; SAE Techical Paper Series No. 2005-01-1499; SAE International: Warrendale, PA, USA, 2005. [Google Scholar]
- Stamm, M.; Altinsoy, E.; Merchel, S. Frequenzwahrnehmung von Ganzkörperschwingungen im Vergleich zur auditiven Wahrenhmung I. In Proceedings of the DAGA 2010—36th German Annual Conference on Acoustics, Berlin, Germany, 15–18 March 2010; pp. 867–868. [Google Scholar]
- Merchel, S.; Leppin, A.; Altinsoy, E. Multisensorische Interaktion im Fahrzeug: Audio-Taktile Intensitätswahrnehmung. In Proceedings of the DAGA 2010—36th Annual Conference on Acoustics, Berlin, Germany, 15–18 March 2010; pp. 871–872. [Google Scholar]
- Schwendicke, A.; Altinsoy, M.E. Frequency Masking Effects for Vertical Whole-Body Vibration for Seated Subjects. Vibration 2020, 3, 357–370. [Google Scholar] [CrossRef]
- Dr. Ing. h.c. F. Porsche AG. Internal Illustration; Dr. Ing. h.c. F. Porsche AG: Stuttgart, Germany, 2020. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Bühner, M.; Ziegler, M. Statistik für Psychologen und Sozialwissenschaftler; Pearson: München, Germany, 2009; ISBN 978-3-8273-7274-1. [Google Scholar]
- Festa, M.; Durm, T.; Lünebach, M.; Gauterin, F. Difference Thresholds for the Perception of Sinusoidal Vertical Stimuli of Whole-Body Vibrations in Ranges of Amplitude and Frequency Relevant to Ride Comfort. Vibration 2020, 3, 116–131. [Google Scholar] [CrossRef]
- Morioka, M.; Griffin, M.J. Difference thresholds for intensity perception of whole-body vertical vibration: Effect of frequency and magnitude. J. Acoust. Soc. Am. 2000, 107, 620–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, L.A.; Lederman, S.J. Human Hand Function; Oxford University Press: New York, NY, USA, 2006; ISBN 9780195173154. [Google Scholar]
- Goldstein, E.B. Wahrnehmungspsychologie; Spektrum Akademischer Verlag: Heidelberg, Germany, 1997; ISBN 3-8274-0189-5. [Google Scholar]
- Gescheider, A.; Bolanowski, A.J.; Hardick, K.R. The frequency selectivity of information-processing channels in the tactile sensory system. Somatosens. Mot. Res. 2001, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Gescheider, G.A.; Bolanowski, S.J.; Pope, J.V.; Verrillo, R.T. A four-channel analysis of the tactile sensitivity of the fingertip: Frequency selectivity, spatial summation, and temporal summation. Somatosens. Mot. Res. 2002, 19, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Morioka, M.; Griffin, M.J. Independent responses of Pacinian and Non-Pacinian systems with hand-transmitted vibration detected from masked thresholds. Somatosens. Mot. Res. 2005, 22, 69–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merchel, S.; Altinsoy, M.E. Psychophysical comparison of the auditory and tactile perception: A survey. J. Multimodal User Interfaces 2020, 14, 271–283. [Google Scholar] [CrossRef]
- Lenhard, W.; Lenhard, A. Berechnung von Effektstärken. Available online: https://www.psychometrica.de/effektstaerke.html (accessed on 12 March 2021).
Tactile Impulse | Figure 2 (Left) | Figure 2 (Right) |
---|---|---|
Suspension mode | Normal | Sport |
Δ Peak-to-peak value | Reference | +12.5% (SD < 4%) |
Duration | 0.069 s (SD < 0.003 s) | 0.069 s (SD < 0.003 s) |
Audible Impulse | Figure 3 (Left) | Figure 3 (Right) |
---|---|---|
Sound volume | 1 | 2 |
Δ Sound pressure level (Level vs. Time, A-Weighting, Fast) | Reference | +9 dB |
Dominant frequency | ≈100 Hz | ≈100 Hz |
No. | Suspension | Volume | Statistical Power | Significance | Effect Size | Interpretation |
---|---|---|---|---|---|---|
padj | d | acc. to Cohen [20] | ||||
1 | N↔N | 1↔2 | <0.8 | >0.05 | - | - |
2 | S↔S | 1↔2 | <0.8 | >0.05 | - | - |
3 | N↔S | 1↔1 | >0.8 | <0.05 | >1.0 | Large |
4 | N↔S | 1↔2 | >0.8 | <0.05 | >1.0 | Large |
5 | N↔S | 2↔1 | >0.8 | <0.05 | >1.0 | Large |
6 | N↔S | 2↔2 | >0.8 | <0.05 | >1.0 | Large |
No. | Volume | Suspension | Statistical Power | Significance | Effect Size | Interpretation |
---|---|---|---|---|---|---|
padj | d | acc. to Cohen [20] | ||||
1 | 1↔1 | N↔S | <0.8 | >0.05 | - | - |
2 | 2↔2 | N↔S | <0.8 | >0.05 | - | - |
3 | 1↔2 | N↔N | >0.8 | <0.05 | >1.0 | Large |
4 | 1↔2 | N↔S | >0.8 | <0.05 | >1.0 | Large |
5 | 2↔1 | N↔S | >0.8 | <0.05 | >1.0 | Large |
6 | 1↔2 | S↔S | >0.8 | <0.05 | >1.0 | Large |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Festa, M.; Stalter, F.; Tavornmas, A.; Gauterin, F. Human Response to Vehicle Vibrations and Acoustics during Transient Road Excitations. Vibration 2021, 4, 357-368. https://doi.org/10.3390/vibration4020023
Festa M, Stalter F, Tavornmas A, Gauterin F. Human Response to Vehicle Vibrations and Acoustics during Transient Road Excitations. Vibration. 2021; 4(2):357-368. https://doi.org/10.3390/vibration4020023
Chicago/Turabian StyleFesta, Maurizio, Frank Stalter, Arm Tavornmas, and Frank Gauterin. 2021. "Human Response to Vehicle Vibrations and Acoustics during Transient Road Excitations" Vibration 4, no. 2: 357-368. https://doi.org/10.3390/vibration4020023
APA StyleFesta, M., Stalter, F., Tavornmas, A., & Gauterin, F. (2021). Human Response to Vehicle Vibrations and Acoustics during Transient Road Excitations. Vibration, 4(2), 357-368. https://doi.org/10.3390/vibration4020023