The Effect of Meloxicam on Inflammatory Response and Oxidative Stress Induced by Klebsiella pneumoniae in Bovine Mammary Epithelial Cells
<p>The effects of MEL on cell viability. BMECs were treated with different concentrations (0, 0.5, 5, 10, 20, and 40 μΜ) of MEL for 12 h. The cell viability was evaluated with the CCK-8 method.</p> "> Figure 2
<p>The effects of MEL on bacterial load. BMECs were infected with <span class="html-italic">K. pneumoniae</span> for 3 h in the presence or absence of MEL. Each experiment was repeated 4 times.</p> "> Figure 3
<p>The effects of MEL on the mRNA expression (<b>A</b>) and protein levels (<b>B</b>,<b>C</b>) of COX-2 in BMECs. BMECs were infected with <span class="html-italic">K. pneumoniae</span> for 3 h in the presence or absence of MEL. <span class="html-italic"># p</span> < 0.05 and ## <span class="html-italic">p</span> < 0.01 compared with the control group. * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01 compared with the group infected with <span class="html-italic">K. pneumoniae</span> alone (see <a href="#app1-vetsci-11-00607" class="html-app">Supplementary Materials</a>).</p> "> Figure 4
<p>The effects of MEL on the mRNA expression of IL-1β (<b>A</b>), IL-6 (<b>B</b>), IL-8 (<b>C</b>), and TNF-α (<b>D</b>) in BMECs. BMECs were infected with <span class="html-italic">K. pneumoniae</span> for 3 h in the presence or absence of MEL. ## <span class="html-italic">p</span> < 0.01 compared with the control group. * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01 compared with the group infected with <span class="html-italic">K. pneumoniae</span> alone.</p> "> Figure 5
<p>The effects of MEL on the NF-κB signaling pathway. BMECs were infected with <span class="html-italic">K. pneumoniae</span> for 1 h in the presence or absence of MEL. (<b>A</b>) The protein expression of p-p65, p65, p-IκBα, and IκBα in BMECs (see <a href="#app1-vetsci-11-00607" class="html-app">Supplementary Materials</a>). (<b>B</b>) Changes in the phosphorylation level of p65. (<b>C</b>) Changes in the phosphorylation level of IκBα. ## <span class="html-italic">p</span> < 0.01 compared with the control group. * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01 compared with the group infected with <span class="html-italic">K. pneumoniae</span> alone.</p> "> Figure 6
<p>The effect of MEL on the nuclear accumulation of the p65 protein in BMECs. BMECs were infected with <span class="html-italic">K. pneumoniae</span> for 1 h in the presence or absence of MEL.</p> "> Figure 7
<p>The effects of MEL on the oxidative state of BMECs. (<b>A</b>,<b>B</b>) Changes in the level of ROS. (<b>C</b>) Changes in the level of MDA. BMECs were infected with <span class="html-italic">K. pneumoniae</span> for 3 h in the presence or absence of MEL. ## <span class="html-italic">p</span> < 0.01 compared with the control group. ** <span class="html-italic">p</span> < 0.01 compared with the group infected with <span class="html-italic">K. pneumoniae</span> alone.</p> "> Figure 8
<p>The effects of MEL on the antioxidant capacity of BMECs. BMECs were infected with <span class="html-italic">K. pneumoniae</span> for 3 h in the presence or absence of MEL. The activity of SOD (<b>A</b>) and CAT (<b>B</b>) and the level of T-AOC (<b>C</b>) were detected using commercial kits. ## <span class="html-italic">p</span> < 0.01 compared with the control group. * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01 compared with the group infected with <span class="html-italic">K. pneumoniae</span> alone.</p> "> Figure 9
<p>The effects of MEL on the Nrf2 signaling pathway in BMECs. (<b>A</b>) The key proteins expressed in the Nrf2 signaling pathway were detected by Western blot (see <a href="#app1-vetsci-11-00607" class="html-app">Supplementary Materials</a>). (<b>B</b>) Changes in Nrf2 nuclear accumulation. Nuclear protein was extracted from cells. The protein expression levels of Nrf2 (<b>C</b>), Keap1 (<b>D</b>), HO-1 (<b>E</b>), and NQO1 (<b>F</b>) were detected using total protein. BMECs were infected with <span class="html-italic">K. pneumoniae</span> for 3 h in the presence or absence of MEL. <span class="html-italic"># p</span> < 0.05 and ## <span class="html-italic">p</span> < 0.01 compared with the control group. * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01 compared with the group infected with <span class="html-italic">K. pneumoniae</span> alone.</p> ">
1. Introduction
2. Materials and Methods
2.1. Antibodies
2.2. Culture of BMEC
2.3. Preparation of K. pneumoniae
2.4. Cell Viability Analysis
2.5. Cell Infection and MEL Treatment
2.6. Western Blot Analysis
2.7. RNA Extraction and Real-Time Quantitative PCR
2.8. Detection of Bacterial Load
2.9. Detection of Intracellular ROS
2.10. Detection of SOD, CAT, T-AOC, and Malondialdehyde (MDA)
2.11. Immunofluorescence
2.12. Statistics
3. Results
3.1. Cell Viability and the Concentration of MEL
3.2. Bacterial Load
3.3. MEL Inhibits the Production of COX-2
3.4. Inflammatory Gene Expression
3.5. NF-κB Signaling Pathway Activation
3.6. Intracellular ROS and MDA Content
3.7. T-AOC and Activities of SOD and CAT
3.8. Nrf2 Signaling Pathway Activation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aghamohammadi, M.; Haine, D.; Kelton, D.F.; Barkema, H.W.; Hogeveen, H.; Keefe, G.P.; Dufour, S. Herd-Level Mastitis-Associated Costs on Canadian Dairy Farms. Front. Vet. Sci. 2018, 5, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.; Hulland, C.; Ruegg, P.L. Characterization of clinical mastitis occurring in cows on 50 large dairy herds in Wisconsin. J. Dairy Sci. 2013, 96, 7538–7549. [Google Scholar] [CrossRef] [PubMed]
- Schukken, Y.; Chuff, M.; Moroni, P.; Gurjar, A.; Santisteban, C.; Welcome, F.; Zadoks, R. The “other” gram-negative bacteria in mastitis: Klebsiella, serratia, and more. Vet. Clin. N. Am. Food Anim. Pract. 2012, 28, 239–256. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Barkema, H.W.; Zhang, L.; Liu, G.; Deng, Z.; Cai, L.; Shan, R.; Zhang, S.; Zou, J.; Kastelic, J.P.; et al. Incidence of clinical mastitis and distribution of pathogens on large Chinese dairy farms. J. Dairy Sci. 2017, 100, 4797–4806. [Google Scholar] [CrossRef] [PubMed]
- Fuenzalida, M.J.; Ruegg, P.L. Negatively controlled, randomized clinical trial to evaluate intramammary treatment of nonsevere, gram-negative clinical mastitis. J. Dairy Sci. 2019, 102, 5438–5457. [Google Scholar] [CrossRef] [PubMed]
- Sampimon, O.C.; Sol, J.; Kock, P.A. An outbreak of Klebsiella pneumoniae mastitis. Tijdschr. Diergeneeskd. 2006, 131, 2–4. [Google Scholar]
- Zheng, Z.; Gorden, P.J.; Xia, X.; Zheng, Y.; Li, G. Whole-genome analysis of Klebsiella pneumoniae from bovine mastitis milk in the U.S. Environ. Microbiol. 2022, 24, 1183–1199. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, J.; Han, B.; Barkema, H.W.; Cobo, E.R.; Kastelic, J.P.; Zhou, M.; Shi, Y.; Wang, J.; Yang, R.; et al. Klebsiella pneumoniae isolated from bovine mastitis is cytopathogenic for bovine mammary epithelial cells. J. Dairy Sci. 2020, 103, 3493–3504. [Google Scholar] [CrossRef]
- Fitzpatrick, C.E.; Chapinal, N.; Petersson-Wolfe, C.S.; DeVries, T.J.; Kelton, D.F.; Duffield, T.F.; Leslie, K.E. The effect of meloxicam on pain sensitivity, rumination time, and clinical signs in dairy cows with endotoxin-induced clinical mastitis. J. Dairy Sci. 2013, 96, 2847–2856. [Google Scholar] [CrossRef]
- Noble, S.; Balfour, J.A. Meloxicam. Drugs 1996, 51, 424–430. [Google Scholar] [CrossRef]
- Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef] [PubMed]
- Gilroy, D.W.; Colville-Nash, P.R.; Willis, D.; Chivers, J.; Paul-Clark, M.J.; Willoughby, D.A. Inducible cyclooxygenase may have anti-inflammatory properties. Nat. Med. 1999, 5, 698–701. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, F.B.; Cunha, P.; Jensen, K.; Glass, E.J.; Foucras, G.; Robert-Granié, C.; Rupp, R.; Rainard, P. Differential response of bovine mammary epithelial cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune system. Vet. Res. 2013, 44, 40–62. [Google Scholar] [CrossRef] [PubMed]
- Akira, S.; Takeda, K.; Kaisho, T. Toll-like receptors: Critical proteins linking innate and acquired immunity. Nat. Immunol. 2001, 2, 675–680. [Google Scholar] [CrossRef]
- Harada, A.; Sekido, N.; Akahoshi, T.; Wada, T.; Mukaida, N.; Matsushima, K. Essential involvement of interleukin-8 (IL-8) in acute inflammation. J. Leukoc. Biol. 1994, 56, 559–564. [Google Scholar] [CrossRef]
- Dinarello, C.A. Cytokines as mediators in the pathogenesis of septic shock. Curr. Top. Microbiol. Immunol. 1996, 216, 133–165. [Google Scholar]
- Bannerman, D.D.; Paape, M.J.; Hare, W.R.; Hope, J.C. Characterization of the bovine innate immune response to intramammary infection with Klebsiella pneumoniae. J. Dairy Sci. 2004, 87, 2420–2432. [Google Scholar] [CrossRef]
- Xu, S.; Miao, Y.; Dong, J.; Cui, L.; Liu, K.; Li, J.; Meng, X.; Zhu, G.; Wang, H. Selenomethionine Inhibits NF-κB-mediated Inflammatory Responses of Bovine Mammary Epithelial Cells Caused by Klebsiella pneumoniae by Increasing Autophagic Flux. Biol. Trace Elem. Res. 2024, 202, 1568–1581. [Google Scholar] [CrossRef]
- Rongvaux, A. Innate immunity and tolerance toward mitochondria. Mitochondrion 2018, 41, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Zhang, J.; Yang, J.; Yi, B.; Liu, G.; Zhou, M.; Kastelic, J.P.; Han, B.; Gao, J. Klebsiella pneumoniae infection causes mitochondrial damage and dysfunction in bovine mammary epithelial cells. Vet. Res. 2021, 52, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Tan, J.; Miao, Y.; Lei, P.; Zhang, Q. ROS and Autophagy: Interactions and Molecular Regulatory Mechanisms. Cell Mol. Neurobiol. 2015, 35, 615–621. [Google Scholar] [CrossRef] [PubMed]
- McDougall, S.; Bryan, M.A.; Tiddy, R.M. Effect of treatment with the nonsteroidal antiinflammatory meloxicam on milk production, somatic cell count, probability of re-treatment, and culling of dairy cows with mild clinical mastitis. J. Dairy Sci. 2009, 92, 4421–4431. [Google Scholar] [CrossRef] [PubMed]
- McDougall, S.; Abbeloos, E.; Piepers, S.; Rao, A.S.; Astiz, S.; van Werven, T.; Statham, J.; Pérez-Villalobos, N. Addition of meloxicam to the treatment of clinical mastitis improves subsequent reproductive performance. J. Dairy Sci. 2016, 99, 2026–2042. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhou, Y.; Zhu, Q.; Zang, H.; Cai, J.; Wang, J.; Cui, L.; Meng, X.; Zhu, G.; Li, J. Staphylococcus aureus induces autophagy in bovine mammary epithelial cells and the formation of autophagosomes facilitates intracellular replication of Staph. aureus. J. Dairy Sci. 2019, 102, 8264–8272. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Xu, S.; Li, J.; Cui, L.; Dong, J.; Meng, X.; Zhu, G.; Wang, H. Selenomethionine protected BMECs from inflammatory injury and oxidative damage induced by Klebsiella pneumoniae by inhibiting the NF-κB and activating the Nrf2 signaling pathway. Int. Immunopharmacol. 2022, 110, 109027. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Guo, Y.F.; Li, C.Y.; Qiu, C.W.; Guo, M.Y. Selenium influences mmu-miR-155 to inhibit inflammation in Staphylococcus aureus-induced mastitis in mice. Food Funct. 2019, 10, 6543–6555. [Google Scholar] [CrossRef]
- Hisaeda, K.; Nohara, M.; Ohta, N.; Goto, A.; Inoue, Y.; Hata, A.; Shinozuka, Y. Effect of 2% meloxicam injection in Holstein dairy cows on acute clinical mastitis without systemic symptoms. J. Vet. Med. Sci. 2024, 86, 374–380. [Google Scholar] [CrossRef]
- Shock, D.; Roche, S.; Olson, M. A Comparative Pharmacokinetic Analysis of Oral and Subcutaneous Meloxicam Administered to Postpartum Dairy Cows. Vet. Sci. 2019, 6, 73. [Google Scholar] [CrossRef]
- Caldeira, M.O.; Bruckmaier, R.M.; Wellnitz, O. Meloxicam affects the inflammatory responses of bovine mammary epithelial cells. J. Dairy Sci. 2019, 102, 10277–10290. [Google Scholar] [CrossRef]
- Griesbeck-Zilch, B.; Meyer, H.H.; Kühn, C.H.; Schwerin, M.; Wellnitz, O. Staphylococcus aureus and Escherichia coli cause deviating expression profiles of cytokines and lactoferrin messenger ribonucleic acid in mammary epithelial cells. J. Dairy Sci. 2008, 91, 2215–2224. [Google Scholar] [CrossRef]
- Sintes, G.F.; Bruckmaier, R.M.; Wellnitz, O. Nonsteroidal anti-inflammatory drugs affect the mammary epithelial barrier during inflammation. J. Dairy Sci. 2020, 103, 10742–10753. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Song, S.; Li, H.; Jiang, X.; Yin, P.; Wan, C.; Liu, X.; Liu, F.; Xu, J. The protective effect of caffeic acid against inflammation injury of primary bovine mammary epithelial cells induced by lipopolysaccharide. J. Dairy Sci. 2014, 97, 2856–2865. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Lim, J.W.; Kim, H. Effect of thiol antioxidants on lipopolysaccharide-induced cyclooxygenase-2 expression in pulmonary epithelial cells. J. Physiol. Pharmacol. 2018, 69. [Google Scholar]
- Ma, X.; Li, M.; Lu, G.; Wang, R.; Wei, Y.; Guo, Y.; Yu, Y.; Jiang, C. Anti-inflammation of epicatechin mediated by TMEM35A and TMPO in bovine mammary epithelial cell line cells and mouse mammary gland. J. Dairy Sci. 2021, 104, 12925–12938. [Google Scholar] [CrossRef]
- Park, G.Y.; Christman, J.W. Involvement of cyclooxygenase-2 and prostaglandins in the molecular pathogenesis of inflammatory lung diseases. Am. J. Physiol. Lung Cell Mol. Physiol. 2006, 290, 797–805. [Google Scholar] [CrossRef]
- Kim, H.S.; Ye, S.K.; Cho, I.H.; Jung, J.E.; Kim, D.H.; Choi, S.; Kim, Y.S.; Park, C.G.; Kim, T.Y.; Lee, J.W.; et al. 8-hydroxydeoxyguanosine suppresses NO production and COX-2 activity via Rac1/STATs signaling in LPS-induced brain microglia. Free Radic. Biol. Med. 2006, 41, 1392–1403. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, K.; Yang, D.; Oppenheim, J.J. Interleukin-8: An evolving chemokine. Cytokine 2022, 153, 155828–155835. [Google Scholar] [CrossRef]
- Korkmaz, F.T.; Elsasser, T.H.; Kerr, D.E. Variation in fibroblast expression of toll-like receptor 4 and lipopolysaccharide-induced cytokine production between animals predicts control of bacterial growth but not severity of Escherichia coli mastitis. J. Dairy Sci. 2018, 101, 10098–10115. [Google Scholar] [CrossRef]
- Rahman, M.M.; McFadden, G. Modulation of NF-κB signalling by microbial pathogens. Nat. Rev. Microbiol. 2011, 9, 291–306. [Google Scholar] [CrossRef]
- Zhao, W.; He, F.; Barkema, H.W.; Xu, S.; Gao, J.; Liu, G.; Deng, Z.; Shahid, M.; Shi, Y.; Kastelic, J.P.; et al. Prototheca spp. induce an inflammatory response via mtROS-mediated activation of NF-κB and NLRP3 inflammasome pathways in bovine mammary epithelial cell cultures. Vet. Res. 2021, 52, 144–158. [Google Scholar] [CrossRef]
- Yang, W.; Zerbe, H.; Petzl, W.; Brunner, R.M.; Günther, J.; Draing, C.; von Aulock, S.; Schuberth, H.J.; Seyfert, H.M. Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-kappaB in mammary epithelial cells and to quickly induce TNFalpha and interleukin-8 (CXCL8) expression in the udder. Mol. Immunol. 2008, 45, 1385–1397. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhou, E.; Liu, Z.; Li, F.; Liang, D.; Liu, B.; Song, X.; Zhao, F.; Fen, X.; Li, D.; et al. Staphylococcus aureus and Escherichia coli elicit different innate immune responses from bovine mammary epithelial cells. Vet. Immunol. Immunopathol. 2013, 155, 245–252. [Google Scholar] [CrossRef]
- Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 2009, 1, a001651. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.S.; Ghosh, S. NF-κB in immunobiology. Cell Res. 2011, 21, 223–244. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef]
- Fialkow, L.; Wang, Y.; Downey, G.P. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic. Biol. Med. 2007, 42, 153–164. [Google Scholar] [CrossRef]
- Razavi, S.M.; Soltan, M.S.; Abbasian, K.; Karami, A.; Nazifi, S. Host oxidative stress in piroplasmosis: A review in domestic animals. Vet. Parasitol. 2023, 322, 110011–110017. [Google Scholar] [CrossRef]
- Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 2017, 524, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Scandalios, J.G. Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res. 2005, 38, 995–1014. [Google Scholar] [CrossRef]
- He, F.; Ru, X.; Wen, T. NRF2, a Transcription Factor for Stress Response and Beyond. Int. J. Mol. Sci. 2020, 21, 4777. [Google Scholar] [CrossRef]
- Jones, D.P. Redefining oxidative stress. Antioxid. Redox Signal. 2006, 8, 1865–1879. [Google Scholar] [CrossRef] [PubMed]
Gene | Primer Sequences (5′-3′) | Accession Number |
---|---|---|
β-actin | F: CATCACCATCGGCAATGAGC R: AGCACCGTGTTGGCGTAGAG | NM_173979.3 |
IL-1β | F: GCTATGAGCCACTTCGTGAGGAC R: GATTGAGGGCGTCGTTCAGGAT | NM_174093.1 |
IL-6 | F: TGATGACTTCTGCTTTCCCTACCC R: ATCTTTGCGTTCTTTACCCACTCG | NM_173923.2 |
IL-8 | F: ATGACTTCCAAGCTGGCTGTT R: GGTTTAGGCAGACCTCGTTTC | NM_173925.2 |
TNF-α | F: GCTCTCTCTCACATACCCTGC R: ATCCCGGATCATGCTTTTGGT | NM_173966.3 |
COX-2 | F: TCCTGAAACCCACTCCCAACA R: TGGGCAGTCATCAGGCACAG | AF_031698.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Qiu, S.; Fang, L.; Cui, L.; Dong, J.; Guo, L.; Meng, X.; Li, J.; Wang, H. The Effect of Meloxicam on Inflammatory Response and Oxidative Stress Induced by Klebsiella pneumoniae in Bovine Mammary Epithelial Cells. Vet. Sci. 2024, 11, 607. https://doi.org/10.3390/vetsci11120607
Liu K, Qiu S, Fang L, Cui L, Dong J, Guo L, Meng X, Li J, Wang H. The Effect of Meloxicam on Inflammatory Response and Oxidative Stress Induced by Klebsiella pneumoniae in Bovine Mammary Epithelial Cells. Veterinary Sciences. 2024; 11(12):607. https://doi.org/10.3390/vetsci11120607
Chicago/Turabian StyleLiu, Kangjun, Shangfei Qiu, Li Fang, Luying Cui, Junsheng Dong, Long Guo, Xia Meng, Jianji Li, and Heng Wang. 2024. "The Effect of Meloxicam on Inflammatory Response and Oxidative Stress Induced by Klebsiella pneumoniae in Bovine Mammary Epithelial Cells" Veterinary Sciences 11, no. 12: 607. https://doi.org/10.3390/vetsci11120607
APA StyleLiu, K., Qiu, S., Fang, L., Cui, L., Dong, J., Guo, L., Meng, X., Li, J., & Wang, H. (2024). The Effect of Meloxicam on Inflammatory Response and Oxidative Stress Induced by Klebsiella pneumoniae in Bovine Mammary Epithelial Cells. Veterinary Sciences, 11(12), 607. https://doi.org/10.3390/vetsci11120607