Factors Influencing the Efficacy of COVID-19 Vaccines: A Quantitative Synthesis of Phase III Trials
<p>PRISMA-P flow diagram for the identification of the Phase III RCTs included in the quantitative analysis concerning the efficacy of COVID-19 vaccines. COVID-19: Coronavirus Disease 2019; PRISMA-P: Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols; RCT: randomized controlled trial.</p> "> Figure 2
<p>Forest plot of the overall and sensitivity analyses on the efficacy of COVID-19 vaccines in preventing the illness (<b>A</b>,<b>C</b>) and on the RR for COVID-19 after vaccine administration (<b>B</b>,<b>D</b>) vs. negative control. COVID-19: Coronavirus Disease 2019; RR: relative risk; 95%CI: 95% Confidence Interval.</p> "> Figure 3
<p>Graphical representation of the meta-regression analysis for age with respect to the changes in the efficacy of COVID-19 vaccines as overall (<b>A</b>), mRNA-based vaccines (<b>B</b>), and adenovirus-based vaccines (<b>C</b>). The size of the circles is proportional to the sample weights. COVID-19: Coronavirus Disease 2019; mRNA: messenger ribonucleic acid.</p> "> Figure 4
<p>Assessment of the risk of bias via the weighted plot for the assessment of the overall risk of bias (<b>A</b>) and the traffic light plot of the risk of bias of each included RCT via the Cochrane RoB 2 tool (<b>B</b>) (<span class="html-italic">n</span> = 4 studies). The traffic light plot reports five risk of bias domains: D1, bias arising from the randomization process; D2, bias due to deviations from intended intervention; D3, bias due to missing outcome data; D4, bias in measurement of the outcome; D5, bias in selection of the reported result; yellow circle indicates some concerns on the risk of bias and green circle represents low risk of bias. RCT: randomized controlled trial; RoB: risk of bias.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Study Eligibility
2.2. Study Selection
2.3. Data Extraction
2.4. Endpoint
2.5. Data Synthesis and Analysis
2.6. Assessment of the COVID-19 Rate in the Investigated Populations
2.7. Quality of Studies, Risk Bias, and Evidence Profile
2.8. Software and Statistical Significance
3. Results
3.1. Study Characteristics
3.2. Pairwise Meta-Analysis
3.3. Meta-Regression Analysis
3.4. SUCRA
3.5. Bias and Quality of Evidence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. Available online: https://www.dropbox.com/s/t591uw31j3ljiu3/WHO%20COVID-19%20global%20table%20data%20February%2017th%202021%20at%209.51.19%20AM.csv?dl=0 (accessed on 17 February 2021).
- Miller, J.; Blamont, M. European Countries Struggle to Make Most of Pfizer COVID-19 Vaccine Doses. Available online: www.reuters.com/article/health-coronavirus-vaccine-doses-idUSL8N2JQ558 (accessed on 12 February 2021).
- Parodi, E. Moderna COVID Vaccines Delayed in Europe and Elsewhere, Adding to Shortfalls. Available online: https://www.reuters.com/article/us-health-coronavirus-italy-vaccine/moderna-covid-vaccines-delayed-in-europe-and-elsewhere-adding-to-shortfalls-idUKKBN29Y1CD (accessed on 12 February 2021).
- Guarascio, F.; Siebold, S. EU Locks Horns with AstraZeneca on Vaccine Deliveries amid ‘Supply Shock’. Available online: www.reuters.com/article/us-health-coronavirus-eu-astrazeneca-idUSKBN29U0Y9 (accessed on 12 February 2021).
- Le, T.T.; Cramer, J.P.; Chen, R.; Mayhew, S. Evolution of the COVID-19 Vaccine Development Landscape. Nat. Rev. Drug Discov. 2020, 19, 667–668. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Draft Landscape of COVID-19 Candidate Vaccine. Available online: https://www.dropbox.com/s/861p9sw12qlluns/20210205-novel-coronavirus_landscape_covid-19.xlsx?dl=0 (accessed on 8 February 2021).
- NCT04683224. A Study to Evaluate the Safety, Immunogenicity, and Efficacy of UB-612 COVID-19 Vaccine. Available online: https://clinicaltrials.gov/ct2/show/NCT04683224 (accessed on 12 February 2021).
- NCT04642638. Safety, Immunogenicity, and Efficacy of INO-4800 for COVID-19 in Healthy Seronegative Adults at High Risk of SARS-CoV-2 Exposure. Available online: https://clinicaltrials.gov/ct2/show/NCT04642638 (accessed on 12 February 2021).
- INOVIO Pharmaceuticals. INOVIO and Advaccine Announce First Dosing of Subject in Phase 2 Clinical Trial for COVID-19 DNA Vaccine Candidate INO-4800 in China. Available online: http://ir.inovio.com/news-releases/news-releases-details/2020/INOVIO-and-Advaccine-Announce-First-Dosing-of-Subject-in-Phase-2-Clinical-Trial-for-COVID-19-DNA-Vaccine-Candidate-INO-4800-in-China/default.aspx (accessed on 12 February 2021).
- NCT04672395. A Controlled Phase 2/3 Study of Adjuvanted Recombinant SARS-CoV-2 Trimeric S-protein Vaccine (SCB-2019) for the Prevention of COVID-19 (SCB-2019). Available online: https://clinicaltrials.gov/ct2/show/NCT04672395 (accessed on 12 February 2021).
- NCT04695652. A Study to Evaluate MVC-COV1901 Vaccine Against COVID-19 in Adult (COVID-19). Available online: https://clinicaltrials.gov/ct2/show/NCT04695652 (accessed on 12 February 2021).
- Creech, C.B.; Walker, S.C.; Samuels, R.J. SARS-CoV-2 Vaccines. JAMA 2021. [Google Scholar] [CrossRef] [PubMed]
- Reuters Staff. China Approves Two More Domestic COVID-19 Vaccines for Public Use. Available online: https://www.reuters.com/article/us-health-coronavirus-china-vaccine/china-approves-two-more-domestic-covid-19-vaccines-for-public-use-idUKKBN2AP1MW (accessed on 26 February 2021).
- Martin-Moreno, J.M.; Middleton, J.; Sheek-Hussein, M.; Green, M.S. Covid-19 Vaccines: Where Are the Data? Available online: https://blogs.bmj.com/bmj/2020/11/27/covid-19-vaccines-where-are-the-data/ (accessed on 12 February 2021).
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef]
- Logunov, D.Y.; Dolzhikova, I.V.; Shcheblyakov, D.V.; Tukhvatulin, A.I.; Zubkova, O.V.; Dzharullaeva, A.S.; Kovyrshina, A.V.; Lubenets, N.L.; Grousova, D.M.; Erokhova, A.S.; et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: An interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 2021. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Rogliani, P.; Chetta, A.; Cazzola, M.; Calzetta, L. SARS-CoV-2 Neutralizing Antibodies: A Network Meta-Analysis across Vaccines. Vaccines 2021, 9, 227. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Group, P.-P. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schardt, C.; Adams, M.B.; Owens, T.; Keitz, S.; Fontelo, P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med. Inform. Decis. Mak. 2007, 7, 16. [Google Scholar] [CrossRef] [Green Version]
- Jadad, A.R.; Moore, R.A.; Carroll, D.; Jenkinson, C.; Reynolds, D.J.; Gavaghan, D.J.; McQuay, H.J. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Control. Clin. Trials 1996, 17, 1–12. [Google Scholar] [CrossRef]
- Pedder, H.; Sarri, G.; Keeney, E.; Nunes, V.; Dias, S. Data extraction for complex meta-analysis (DECiMAL) guide. Syst. Rev. 2016, 5, 212. [Google Scholar] [CrossRef] [Green Version]
- Gianinazzi, M.E.; Rueegg, C.S.; Zimmerman, K.; Kuehni, C.E.; Michel, G.; Swiss Paediatric Oncology, G. Intra-rater and inter-rater reliability of a medical record abstraction study on transition of care after childhood cancer. PLoS ONE 2015, 10, e0124290. [Google Scholar] [CrossRef] [Green Version]
- Calzetta, L.; Rogliani, P.; Matera, M.G.; Cazzola, M. A Systematic Review With Meta-Analysis of Dual Bronchodilation With LAMA/LABA for the Treatment of Stable COPD. Chest 2016, 149, 1181–1196. [Google Scholar] [CrossRef]
- Wallace, B.C.; Dahabreh, I.J.; Trikalinos, T.A.; Lau, J.; Trow, P.; Schmid, C.H. Closing the gap between methodologists and end-users: R as a computational back-end. J. Stat. Softw. 2012, 49, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. The Cochrane Collaboration 9.6.4 Meta-Regression. 2011. Available online: https://handbook-5-1.cochrane.org/chapter_9/9_6_4_meta_regression.htm (accessed on 12 February 2021).
- Borenstein, M. Introduction to Meta-Analysis; John Wiley & Sons: Chichester, UK, 2009; p. xxviii. 421p. [Google Scholar]
- Calzetta, L.; Rogliani, P.; Ora, J.; Puxeddu, E.; Cazzola, M.; Matera, M.G. LABA/LAMA combination in COPD: A meta-analysis on the duration of treatment. Eur. Respir. Rev. 2017, 26, 160043. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Ades, A.E. Assessing evidence inconsistency in mixed treatment comparisons. J. Am. Stat. Assoc. 2006, 101, 447–459. [Google Scholar] [CrossRef]
- Spiegelhalter, D.J.; Abrams, K.R.; Myles, J.P. Bayesian Approaches to Clinical Trials and Health-Care Evaluation; John Wiley & Sons: Hoboken, NJ, USA, 2004; Volume 13. [Google Scholar]
- Van Valkenhoef, G.; Lu, G.; de Brock, B.; Hillege, H.; Ades, A.E.; Welton, N.J. Automating network meta-analysis. Res. Synth. Methods 2012, 3, 285–299. [Google Scholar] [CrossRef]
- Van Valkenhoef, G.; Dias, S.; Ades, A.E.; Welton, N.J. Automated generation of node-splitting models for assessment of inconsistency in network meta-analysis. Res. Synth. Methods 2016, 7, 80–93. [Google Scholar] [CrossRef] [Green Version]
- Dias, S.; Welton, N.J.; Sutton, A.J.; Caldwell, D.M.; Lu, G.; Ades, A.E. Evidence synthesis for decision making 4: Inconsistency in networks of evidence based on randomized controlled trials. Med Decis. Mak. 2013, 33, 641–656. [Google Scholar] [CrossRef] [Green Version]
- Dobler, C.C.; Wilson, M.E.; Murad, M.H. A pulmonologist’s guide to understanding network meta-analysis. Eur. Respir. J. 2018, 52. [Google Scholar] [CrossRef] [Green Version]
- Cazzola, M.; Rogliani, P.; Calzetta, L.; Hanania, N.A.; Matera, M.G. Impact of Mucolytic Agents on COPD Exacerbations: A Pair-wise and Network Meta-analysis. COPD J. Chronic Obstr. Pulm. Dis. 2017, 14, 552–563. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Maps in Support of the Council Recommendation on a Coordinated Approach to Travel Measures in the EU. Available online: https://www.ecdc.europa.eu/en/covid-19/situation-updates/weekly-maps-coordinated-restriction-free-movement (accessed on 16 February 2021).
- Higgins, J.P.T.; Savović, J.; Page, M.J.; Elbers, R.G.; Sterne, J.A.C. Chapter 8: Assessing risk of bias in a randomized trial. In Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 205–228. Available online: www.training.cochrane.org/handbook (accessed on 12 February 2021).
- Calzetta, L.; Roncada, P.; di Cave, D.; Bonizzi, L.; Urbani, A.; Pistocchini, E.; Rogliani, P.; Matera, M.G. Pharmacological treatments in asthma-affected horses: A pair-wise and network meta-analysis. Equine Vet. J. 2017, 49, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.; Oxman, A.D.; Akl, E.A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; DeBeer, H.; et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J. Clin. Epidemiol. 2011, 64, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savovic, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGuinness, L.A. robvis: An R Package and Web Application for Visualising Risk-of-Bias Assessments. Available online: https://github.com/mcguinlu/robvis (accessed on 10 January 2021).
- Thompson, S.G.; Higgins, J.P. How should meta-regression analyses be undertaken and interpreted? Stat. Med. 2002, 21, 1559–1573. [Google Scholar] [CrossRef] [PubMed]
- Stang, A.; Poole, C.; Kuss, O. The ongoing tyranny of statistical significance testing in biomedical research. Eur. J. Epidemiol. 2010, 25, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Citrome, L. The Tyranny of the P-Value: Effect Size Matters; Taylor & Francis: Abingdon, UK, 2011. [Google Scholar]
- Hu, D.; Lou, X.; Meng, N.; Li, Z.; Teng, Y.; Zou, Y.; Wang, F. Influence of age and gender on the epidemic of COVID-19: Evidence from 177 countries and territories-an exploratory, ecological study. Wien. Klin. Wochenschr. 2021. [Google Scholar] [CrossRef]
- Voysey, M.; Costa Clemens, S.A.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: A pooled analysis of four randomised trials. Lancet 2021. [Google Scholar] [CrossRef]
- Doshi, P. Peter Doshi: Pfizer and Moderna’s “95% Effective” Vaccines—We Need More Details and the Raw Data. Available online: https://blogs.bmj.com/bmj/2021/01/04/peter-doshi-pfizer-and-modernas-95-effective-vaccines-we-need-more-details-and-the-raw-data/ (accessed on 3 March 2021).
- Rossman, H.; Shilo, S.; Meir, T.; Gorfine, M.; Shalit, U.; Segal, E. Patterns of COVID-19 pandemic dynamics following deployment of a broad national immunization program. medRxiv 2021. [Google Scholar] [CrossRef]
- Dagan, N.; Barda, N.; Kepten, E.; Miron, O.; Perchik, S.; Katz, M.A.; Hernán, M.A.; Lipsitch, M.; Reis, B.; Balicer, R.D. BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting. N. Engl. J. Med. 2021. [Google Scholar] [CrossRef]
- Mallapaty, S. Vaccines are Curbing COVID: Data from Israel Show Drop in Infections. Available online: https://www.nature.com/articles/d41586-021-00316-4 (accessed on 20 February 2021).
- Kershner, I.; Zimmer, C. Israel’s Vaccination Results Point a Way Out of Virus Pandemic. Available online: www.nytimes.com/2021/02/05/world/middleeast/israel-virus-vaccination.html (accessed on 12 February 2021).
- Russell, F.M.; Greenwood, B. Who should be prioritised for COVID-19 vaccination? Hum. Vaccines Immunother. 2020, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Stein-Zamir, C.; Abramson, N.; Shoob, H.; Libal, E.; Bitan, M.; Cardash, T.; Cayam, R.; Miskin, I. A large COVID-19 outbreak in a high school 10 days after schools’ reopening, Israel, May 2020. Eurosurveillance 2020, 25, 2001352. [Google Scholar] [CrossRef] [PubMed]
- Szablewski, C.M.; Chang, K.T.; Brown, M.M.; Chu, V.T.; Yousaf, A.R.; Anyalechi, N.; Aryee, P.A.; Kirking, H.L.; Lumsden, M.; Mayweather, E. SARS-CoV-2 transmission and infection among attendees of an overnight camp—Georgia, June 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 1023. [Google Scholar] [CrossRef]
- Yonker, L.M.; Neilan, A.M.; Bartsch, Y.; Patel, A.B.; Regan, J.; Arya, P.; Gootkind, E.; Park, G.; Hardcastle, M.; St John, A.; et al. Pediatric Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Clinical Presentation, Infectivity, and Immune Responses. J. Pediatr. 2020, 227, 45–52. [Google Scholar] [CrossRef]
- Tatsioni, A.; Ioannidis, J.P.A. Meta-analysis. In International Encyclopedia of Public Health, 2nd ed.; Quah, S.R., Ed.; Academic Press: Oxford, UK, 2017; pp. 117–124. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.; Rothstein, H.R. Introduction to Meta-Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
Study and Year with Reference | Logunov et al., 2021 [16] | Baden et al., 2020 [18] | Polack et al., 2020 [17] | Voysey et al., 2020 [15] |
---|---|---|---|---|
Trial number Identifier | NCT04530396 | NCT04470427 | NCT04368728 | ISRCTN89951424; NCT04324606, NCT04400838, NCT04444674 |
Vaccine developer | Gamaleya Research Institute | Moderna/National Institute of Allergy and Infectious Diseases’s Vaccine Research Center | BioNTech/Fosun Pharma/Pfizer | University of Oxford/AstraZeneca |
COVID-19 vaccine (dose and route of administration) | Sputnik V or Gam-COVID-Vac (1 × 1011 viral particles IM) | mRNA-1273 (100 μg IM) | BNT162b2 (30 µg IM) | AZD1222 or ChAdOx1 nCoV-19 (5 × 1010 viral particles IM) |
Study characteristics | Phase III, multicenter, randomized, double-blind, negative-controlled, parallel group | Phase III, multicenter, randomized, single-blind, stratified, parallel group | Phase III, multicenter, randomized, single-blind, negative-controlled, parallel group | Phase III, multicenter, randomized, single-blind, negative-controlled, parallel group |
Study duration with follow-up (weeks) | ~11 | ~17 | ~16 | ~21 |
Type of candidate vaccine | Recombinant adenovirus type 26 vector plus recombinant adenovirus type 5 vector carrying the gene for SARS-CoV-2 full-length spike glycoprotein | LNP-encapsulated nucleoside-modified mRNA vaccine encoding SARS-CoV-2 prefusion-stabilized full-length spike glycoprotein trimer | Three LNP-encapsulated nucleoside-modified mRNA vaccine encoding trimerized SARS-CoV-2 RBD antigen of spike glycoprotein | Replication-defective chimpanzee adenovirus-vectored vaccine expressing full-length SARS-CoV-2 spike glycoprotein gene |
Number of scheduled doses (timing of inoculations) | Prime and boost inoculation (0, 21 days) | Prime and boost inoculation (0, 28 days) | Prime and boost inoculation (1, 22 days) | Prime and boost inoculation (0, 28–90 days) |
Number of participants | 15,366 | 28,207 | 37,086 | 8895 |
Vaccine recipients characteristics | Healthy adults with negative PCR and IgG and IgM to SARS-CoV-2, with no history of COVID-19 or contact with COVID-19 patients in the preceding 2 weeks before enrolment | Healthy adults or adults with pre-existing stable medical conditions, with no history of SARS-CoV-2 infection | Healthy adults or adults with pre-existing stable medical conditions, with no history of COVID-19, and not taking medications intended to prevent COVID-19 | Healthy adults at high risk of exposure to SARS-CoV-2 |
Age (mean and range) | 45.3 (18.0–87.0) | 51.4 (18.0–95.0) | 52.8 (16.0–91.0) | ≥18.0 |
Male (%) | 61.3 | 52.7 | 50.6 | 41.1 |
Rate of COVID-19 cases (number of cases/100,000 inhabitants/14 days) | 343 | 190 | 320 | 279 |
Jadad score | 5 | 3 | 3 | 3 |
Co-variate | Regression Coefficient, Mean and 95%CI | p Value | Modifying Factor |
---|---|---|---|
Vaccine type | |||
Overall | −1.227 (−2.355–−0.099) | 0.033 | Yes |
Sensitivity analysis by excluding AZD1222 | −0.430 (−1.149–0.289) | 0.241 | No |
Rate of COVID-19 cases | 0.001 (−0.013–0.015) | 0.933 | No |
Age | |||
Overall | 0.014 (−0.008–0.036) | 0.215 | No |
mRNA-based vaccines | 0.023 (−0.003–0.049) | 0.081 | No, but detected a trend toward significance |
Adenovirus-based vaccines | −0.005 (−0.046–0.036) | 0.807 | No |
Sex | −0.539 (−1.261–0.183) | 0.144 | No |
COVID-19 Vaccine | SUCRA (%) |
---|---|
BNT162b2 | 0.75 |
mRNA-1273 | 0.71 |
Sputnik V | 0.62 |
AZD1222 | 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calzetta, L.; Ritondo, B.L.; Coppola, A.; Matera, M.G.; Di Daniele, N.; Rogliani, P. Factors Influencing the Efficacy of COVID-19 Vaccines: A Quantitative Synthesis of Phase III Trials. Vaccines 2021, 9, 341. https://doi.org/10.3390/vaccines9040341
Calzetta L, Ritondo BL, Coppola A, Matera MG, Di Daniele N, Rogliani P. Factors Influencing the Efficacy of COVID-19 Vaccines: A Quantitative Synthesis of Phase III Trials. Vaccines. 2021; 9(4):341. https://doi.org/10.3390/vaccines9040341
Chicago/Turabian StyleCalzetta, Luigino, Beatrice Ludovica Ritondo, Angelo Coppola, Maria Gabriella Matera, Nicola Di Daniele, and Paola Rogliani. 2021. "Factors Influencing the Efficacy of COVID-19 Vaccines: A Quantitative Synthesis of Phase III Trials" Vaccines 9, no. 4: 341. https://doi.org/10.3390/vaccines9040341
APA StyleCalzetta, L., Ritondo, B. L., Coppola, A., Matera, M. G., Di Daniele, N., & Rogliani, P. (2021). Factors Influencing the Efficacy of COVID-19 Vaccines: A Quantitative Synthesis of Phase III Trials. Vaccines, 9(4), 341. https://doi.org/10.3390/vaccines9040341