Unlocking Blended Emotions and Underlying Drivers: A Deep Dive into COVID-19 Vaccination Insights on Twitter Across Digital and Physical Realms in New York, Using ChatGPT
<p>Analysis flow chart.</p> "> Figure 2
<p>Results from the sentiment and emotion analysis: primary and secondary sentiments.</p> "> Figure 3
<p>Results from the topic analysis: factors contributing to the primary and secondary sentiments.</p> "> Figure 4
<p>Sentiment distributions by region and by borough (New York City): before and after the <span class="html-italic">We Can Do</span> campaign.</p> ">
Abstract
:1. Background
2. Literature Review
2.1. COVID-19 Pandemic and Vaccination Hesitancy and Acceptance
2.2. Sentiment and Emotion Analysis: Applying LLM to Social Media Data
2.2.1. Social Emotion and Vaccination Acceptance
2.2.2. Sentiment and Emotion Analysis
3. Method
3.1. Data Collection
3.2. Multi-Class and Multi-Layer Sentiment and Emotion Analysis
3.3. Topic Analysis
3.4. Model Validation
3.5. City and Regional Analysis
4. Results and Discussions
4.1. Muti-Class and Multi-Layer Sentiment and Emotion Analysis
4.2. Results from Topic Analysis
4.3. Results from City and Regional Analysis
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Puri, N.; Coomes, E.A.; Haghbayan, H.; Gunaratne, K. Social media and vaccine hesitancy: New updates for the era of COVID-19 and globalized infectious diseases. Hum. Vaccines Immunother. 2020, 16, 2586–2593. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, J.V.; Wyka, K.; White, T.M.; Picchio, C.A.; Gostin, L.O.; Larson, H.J.; Rabin, K.; Ratzan, S.C.; Kamarulzaman, A.; El-Mohandes, A. A survey of COVID-19 vaccine acceptance across 23 countries in 2022. Nat. Med. 2023, 29, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Wang, S.; Luo, W.; Zhang, M.; Huang, X.; Yan, Y.; Liu, R.; Ly, K.; Kacker, V.; She, B.; et al. Revealing public opinion towards COVID-19 vaccines with Twitter data in the United States: Spatiotemporal perspective. J. Med. Internet Res. 2021, 23, e30854. [Google Scholar] [CrossRef] [PubMed]
- Garcia, K.; Berton, L. Topic detection and sentiment analysis in Twitter content related to COVID-19 from Brazil and the USA. Appl. Soft Comput. 2021, 101, 107057. [Google Scholar] [CrossRef]
- Saud, M.; Mashud, M.; Ida, R. Usage of social media during the pandemic: Seeking support and awareness about COVID-19 through social media platforms. J. Public Aff. 2020, 20, e02417. [Google Scholar] [CrossRef]
- Li, M.; Hua, Y.; Liao, Y.; Zhou, L.; Li, X.; Wang, L.; Yang, J. Tracking the Impact of COVID-19 and Lockdown Policies on Public Mental Health Using Social Media: Infoveillance Study. J. Med. Internet Res. 2022, 24, e39676. [Google Scholar] [CrossRef]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Johnson, R.; Zhang, T. Effective Use of Word Order for Text Categorization with Convolutional Neural Networks. arXiv 2014, arXiv:1412.1058. [Google Scholar]
- Birjali, M.; Kasri, M.; Beni-Hssane, A. A Comprehensive Survey on Sentiment Analysis: Approaches, Challenges and Trends. Knowl.-Based Syst. 2021, 226, 107134. [Google Scholar] [CrossRef]
- Nandwani, P.; Verma, R. A review on sentiment analysis and emotion detection from text. Soc. Netw. Anal. Min. 2021, 11, 81. [Google Scholar] [CrossRef]
- Berrios, R.; Totterdell, P.; Kellett, S. When Feeling Mixed Can Be Meaningful: The Relation Between Mixed Emotions and Eudaimonic Well-Being. J. Happiness Stud. 2018, 19, 841–861. [Google Scholar] [CrossRef]
- Trampe, D.; Quoidbach, J.; Taquet, M.; Avenanti, A. Emotions in Everyday Life. PLoS ONE 2015, 10, e0145450. [Google Scholar] [CrossRef] [PubMed]
- Callender, D. Vaccine hesitancy: More than a movement. Hum. Vaccines Immunother. 2016, 12, 2464–2468. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.L.; Porth, J.M.; Wu, Z.; Boulton, M.L.; Finlay, J.M.; Kobayashi, L.C. Vaccine hesitancy during the COVID-19 pandemic: A latent class analysis of middle-aged and older US adults. J. Commun. Health 2022, 47, 408–415. [Google Scholar] [CrossRef]
- Shakeel, C.S.; Mujeeb, A.A.; Mirza, M.S.; Chaudhry, B.; Khan, S.J. Global COVID-19 vaccine acceptance: A systematic review of associated social and behavioral factors. Vaccines 2022, 10, 110. [Google Scholar] [CrossRef]
- Majid, U.; Ahmad, M.; Zain, S.; Akande, A.; Ikhlaq, F. COVID-19 vaccine hesitancy and acceptance: A comprehensive scoping review of global literature. Health Promot. Int. 2022, 37, daac078. [Google Scholar] [CrossRef]
- Zhang, Y.; Banga Ndzouboukou, J.L.; Gan, M.; Lin, X.; Fan, X. Immune evasive effects of SARS-CoV-2 variants to COVID-19 emergency used vaccines. Front. Immunol. 2021, 12, 4842. [Google Scholar] [CrossRef]
- Rossi, M.M.; Parisi, M.A.; Cartmell, K.B.; McFall, D. Understanding COVID-19 vaccine hesitancy in the Hispanic adult population of South Carolina: A complex mixed-method design evaluation study. BMC Public Health 2023, 23, 2359. [Google Scholar] [CrossRef]
- Williams, C.J.; Kranzler, E.C.; Luchman, J.N.; Denison, B.; Fischer, S.; Wonder, T.; Ostby, R.; Vines, M.; Weinberg, J.; Sayers, E.L.P.; et al. The Initial Relationship Between the United States Department of Health and Human Services’ Digital COVID-19 Public Education Campaign and Vaccine Uptake: Campaign Effectiveness Evaluation. J. Med. Internet Res. 2023, 25, e43873. [Google Scholar] [CrossRef]
- Gunaratne, K.; Coomes, E.A.; Haghbayan, H. Temporal trends in anti-vaccine discourse on Twitter. Vaccine 2019, 37, 4867–4871. [Google Scholar] [CrossRef]
- New York State. Governor Hochul Announces #GetTheVaxFacts Campaign to Combat COVID-19 Vaccine Misinformation; NYS Governor’s Press Office: New York, NY, USA, 2021. Available online: https://www.governor.ny.gov/news/governor-hochul-announces-getthevaxfacts-campaign-combat-covid-19-vaccine-misinformation (accessed on 1 March 2024).
- CDC. Connecticut Uses Social Media to Engage Long-Term Care Residents. COVID-19 Vaccine Community Features; CDC: Atlanta, GA, USA, 2021. Available online: https://archive.cdc.gov/www_cdc_gov/vaccines/covid-19/health-departments/features/index.html (accessed on 20 February 2022).
- Chen, E.; Lerman, K.; Ferrara, E. Tracking social media discourse about the COVID-19 pandemic: Development of a public coronavirus Twitter data set. JMIR Public Health Surveill. 2020, 6, e19273. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Jiang, H.; Lin, S.; Yang, J.; Plasek, J.M.; Bates, D.W.; Zhou, L. Using Twitter Data to Understand Public Perceptions of Approved versus Off-label Use for COVID-19-related Medications. J. Am. Med. Inform. Assoc. 2022, 29, 1668–1678. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yin, L. Defining Urban Big Data in Urban Planning: Literature Review. J. Urban Plan. Dev. 2023, 149, 04022044. [Google Scholar] [CrossRef]
- Plunz, R.A.; Zhou, Y.; Carrasco Vintimilla, M.I.; Mckeown, K.; Yu, T.; Uguccioni, L.; Sutto, M.P. Twitter sentiment in New York City parks as measure of well-being. Landsc. Urban Plan. 2019, 189, 235–246. [Google Scholar] [CrossRef]
- Roberts, H.; Sadler, J.; Chapman, L. The value of Twitter data for determining the emotional responses of people to urban green spaces: A case study and critical evaluation. Urban Stud. 2019, 56, 818–835. [Google Scholar] [CrossRef]
- Shin, E.J. What Can We Learn from Online Reviews? Examining the Reviews of Los Angeles Metro Rail Stations. J. Plan. Educ. Res. 2023, 43, 254–267. [Google Scholar] [CrossRef]
- Zuboff, S. Surveillance Capitalism and the Challenge of Collective Action. New Labor Forum 2019, 28, 10–29. [Google Scholar] [CrossRef]
- Kramer, A.D.I.; Guillory, J.E.; Hancock, J.T. Experimental evidence of massive-scale emotional contagion through social networks. Proc. Natl. Acad. Sci. USA 2014, 111, 8788–8790. [Google Scholar] [CrossRef]
- Ekman, P. An argument for basic emotions. Cogn. Emot. 1992, 6, 169–200. [Google Scholar] [CrossRef]
- Shaver, P.; Schwartz, J.; Kirson, D.; O’Connor, C. Emotion knowledge: Further exploration of a prototype approach. J. Pers. Soc. Psychol. 1987, 52, 1061–1086. [Google Scholar] [CrossRef] [PubMed]
- Ekman, P. Handbook of cognition and emotion. In Handbook of Cognition and Emotion; John Wiley & Sons: Hoboken, NJ, USA, 1999; pp. 226–232. [Google Scholar]
- Plutchik, R. A psychoevolutionary theory of emotions. Soc. Sci. Inf. 1982, 21, 529–553. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y. Characterizing discourses about COVID-19 vaccines on Twitter: A topic modeling and sentiment analysis approach. J. Commun. Health 2023, 16, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Tomkins, S.S.; McCarter, R. What and where are the primary affects? Some evidence for a theory. Percept. Mot. Ski. 1964, 18, 119–158. [Google Scholar] [CrossRef] [PubMed]
- Barrett, L.F. Solving the Emotion Paradox: Categorization and the Experience of Emotion. Pers. Soc. Psychol. Rev. 2006, 10, 20–46. [Google Scholar] [CrossRef] [PubMed]
- Navarro, J.; Marijuán, P.C. Natural intelligence and the ‘economy’ of social emotions: A connection with AI sentiment analysis. Biosystems 2023, 233, 105039. [Google Scholar] [CrossRef]
- Casadei, P.; Lee, N. Global cities, creative industries and their representation on social media: A micro-data analysis of Twitter data on the fashion industry. Environ. Plan. A Econ. Space 2020, 52, 1195–1220. [Google Scholar] [CrossRef]
- Wang, X.; Vergeer, M. Effect of Social Media Posts on Stock Market During COVID-19 Infodemic: An Agenda Diffusion Approach. SAGE Open 2024, 14, 21582440241227688. [Google Scholar] [CrossRef]
- Do, H.J.; Lim, C.-G.; Kim, Y.J.; Choi, H.-J. Analyzing emotions in twitter during a crisis: A case study of the 2015 Middle East Respiratory Syndrome outbreak in Korea. In Proceedings of the 2016 International Conference on Big Data and Smart Computing (BigComp), Hong Kong, China, 18–20 January 2016; pp. 415–418. [Google Scholar]
- Khan, S.M.; Chowdhury, M.; Ngo, L.B.; Apon, A. Multi-class twitter data categorization and geocoding with a novel computing framework. Cities 2020, 96, 102410. [Google Scholar] [CrossRef]
- Turón, A.; Altuzarra, A.; Moreno-Jiménez, J.; Navarro, J. Evolution of social mood in Spain throughout the COVID-19 vaccination process: A machine learning approach to tweets analysis. Public Health 2023, 215, 83–90. [Google Scholar] [CrossRef]
- Jelodar, H.; Wang, Y.; Yuan, C.; Feng, X.; Jiang, X.; Li, Y.; Zhao, L. Latent Dirichlet allocation (LDA) and topic modeling: Models, applications, a survey. Multimed. Tools Appl. 2019, 78, 15169–15211. [Google Scholar] [CrossRef]
- Lee, J.Y.; Dernoncourt, F. Sequential Short-Text Classification with Recurrent and Convolutional Neural Networks. arXiv 2016, arXiv:1603.03827. [Google Scholar]
- Singh, M.; Jakhar, A.K.; Pandey, S. Sentiment analysis on the impact of coronavirus in social life using the BERT model. Soc. Netw. Anal. Min. 2021, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Maynard, D.G.; Greenwood, M.A. Who cares about sarcastic tweets? investigating the impact of sarcasm on sentiment analysis. In Proceedings of the Lrec 2014 Proceedings. Language Resources and Evaluation Conference (LREC), Reykjavik, Iceland, 26–31 May 2014. [Google Scholar]
- Fu, X.; Sanchez, T.W.; Li, C.; Reu Junqueira, J. Deciphering Public Voices in the Digital Era: Benchmarking ChatGPT for Analyzing Citizen Feedback in Hamilton, New Zealand. J. Am. Plan. Assoc. 2024, 90, 728–741. [Google Scholar] [CrossRef]
- Nadkarni, P.M.; Ohno-Machado, L.; Chapman, W.W. Natural language processing: An introduction. J. Am. Med. Inform. Assoc. 2011, 18, 544–551. [Google Scholar] [CrossRef]
- Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright, C.; Wainwright, C.; Mishkin, P.; Agarwal, S.; Slama, K.; Ray, A.; et al. Training language models to follow instructions with human feedback. Adv. Neural Inf. Process. Syst. 2022, 35, 27730–27744. [Google Scholar]
- Kriss, J.L.; Hung, M.-C.; Srivastav, A.; Black, C.L.; Lindley, M.C.; Lee, J.T.; Koppaka, R.; Tsai, Y.; Lu, P.-J.; Yankey, D.; et al. COVID-19 Vaccination Coverage, by Race and Ethnicity—National Immunization Survey Adult COVID Module, United States, December 2020–November 2021. CDC Morbidity and Mortality Weekly Report. 2022. Available online: https://pubmed.ncbi.nlm.nih.gov/35679179/ (accessed on 1 March 2024).
- Zhao, W.X.; Zhou, K.; Li, J.; Tang, T.; Wang, X.; Hou, Y.; Min, Y.; Zhang, B.; Zhang, J.; Dong, Z.; et al. A survey of large language models. arXiv 2023, arXiv:2303.18223. [Google Scholar]
- Liu, B. Aspect and Entity Extraction. In Sentiment Analysis: Mining Opinions, Sentiments, and Emotions; Cambridge University Press: Cambridge, UK, 2015; pp. 137–188. [Google Scholar]
- Xu, H.; Liu, R.; Luo, Z.; Xu, M. COVID-19 vaccine sensing: Sentiment analysis and subject distillation from twitter data. Telemat. Inform. Rep. 2022, 8, 100016. [Google Scholar] [CrossRef]
- City University of New York Graduate School of Public Health & Health Policy. COVID-19 Survey—August 2022. Available online: https://sph.cuny.edu/research/covid-19-survey-august-2022/ (accessed on 20 April 2024).
- Denison, B.; Dahlen, H.; Kim, J.C.; Williams, C.; Kranzler, E.; Luchman, J.N.; Trigger, S.; Bennett, M.; Nighbor, T.; Vines, M.; et al. Evaluation of the “We Can Do This” Campaign Paid Media and COVID-19 Vaccination Uptake, United States, December 2020–January 2022. J. Health Commun. 2022, 28, 573–584. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, L.; Jin, H.; Lin, L. Vaccination against COVID-19: A systematic review and meta-analysis of acceptability and its predictors. Prev. Med. 2021, 150, 106694. [Google Scholar] [CrossRef]
- Schumacher, S.; Salmanton-García, J.; Cornely, O.A.; Mellinghoff, S.C. Increasing influenza vaccination coverage in healthcare workers: A review on campaign strategies and their effect. Infection 2021, 49, 387–399. [Google Scholar] [CrossRef]
- Siddiqui, F.A.; Padhani, Z.A.; Salam, R.A.; Aliani, R.; Lassi, Z.S.; Das, J.K.; Bhutta, Z.A. Interventions to Improve Immunization Coverage Among Children and Adolescents: A Meta-analysis. Pediatrics 2022, 149 (Suppl. S5), e2021053852D. [Google Scholar] [CrossRef] [PubMed]
- Norman, G.; Kletter, M.; Dumville, J. Interventions to increase vaccination in vulnerable groups: Rapid overview of reviews. BMC Public Health 2024, 24, 1479. [Google Scholar] [CrossRef] [PubMed]
- Groom, H.; Hopkins, D.P.; Pabst, L.J.; Morgan, J.M.; Patel, M.; Calonge, N.; Coyle, R.; Dombkowski, K.; Groom, A.V.; Kurilo, M.B.; et al. Immunization Information Systems to Increase Vaccination Rates: A Community Guide Systematic Review. J. Public Health Manag. Pract. 2015, 21, 227–248. [Google Scholar] [CrossRef] [PubMed]
- Isenor, J.E.; Edwards, N.T.; Alia, T.A.; Slayter, K.L.; MacDougall, D.M.; McNeil, S.A.; Bowles, S.K. Impact of pharmacists as immunizers on vaccination rates: A systematic review and meta-analysis. Vaccine 2016, 34, 5708–5723. [Google Scholar] [CrossRef] [PubMed]
- Rufai, S.R.; Bunce, C. World leaders’ usage of Twitter in response to the COVID-19 pandemic: A content analysis. J. Public Health 2020, 42, 510–516. [Google Scholar] [CrossRef]
- Liang, H.; Fung, I.C.-H.; Tse, Z.T.H.; Yin, J.; Chan, C.-H.; Pechta, L.E.; Smith, B.J.; Marquez-Lameda, R.D.; Meltzer, M.I.; Lubell, K.M.; et al. How did Ebola information spread on twitter: Broadcasting or viral spreading? BMC Public Health 2019, 19, 438. [Google Scholar] [CrossRef]
- Bernhardt, J.M. Communication at the core of effective public health. Am. J. Public Health 2004, 94, 2051–2053. [Google Scholar] [CrossRef]
- Lezine, D.A.; Reed, G.A. Political Will: A Bridge Between Public Health Knowledge and Action. Am. J. Public Health 2007, 97, 2010–2013. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, L.; Han, M.; Nie, X. Unlocking Blended Emotions and Underlying Drivers: A Deep Dive into COVID-19 Vaccination Insights on Twitter Across Digital and Physical Realms in New York, Using ChatGPT. Urban Sci. 2024, 8, 222. https://doi.org/10.3390/urbansci8040222
Yin L, Han M, Nie X. Unlocking Blended Emotions and Underlying Drivers: A Deep Dive into COVID-19 Vaccination Insights on Twitter Across Digital and Physical Realms in New York, Using ChatGPT. Urban Science. 2024; 8(4):222. https://doi.org/10.3390/urbansci8040222
Chicago/Turabian StyleYin, Li, Mo Han, and Xuanyi Nie. 2024. "Unlocking Blended Emotions and Underlying Drivers: A Deep Dive into COVID-19 Vaccination Insights on Twitter Across Digital and Physical Realms in New York, Using ChatGPT" Urban Science 8, no. 4: 222. https://doi.org/10.3390/urbansci8040222
APA StyleYin, L., Han, M., & Nie, X. (2024). Unlocking Blended Emotions and Underlying Drivers: A Deep Dive into COVID-19 Vaccination Insights on Twitter Across Digital and Physical Realms in New York, Using ChatGPT. Urban Science, 8(4), 222. https://doi.org/10.3390/urbansci8040222