Black Hole Solutions in Non-Minimally Coupled Weyl Connection Gravity
<p>Global behavior of the standard Ricci scalar (built from the Levi–Civita part of the connection) as function of the distance, assuming <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>Geodesic representation of the Schwarzschild-like black hole (30), considering <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mi>M</mi> </mrow> </semantics></math>, for the parameters <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. For the representation, the initial radius is denoted by <math display="inline"><semantics> <msub> <mi>r</mi> <mn>0</mn> </msub> </semantics></math>, with initial time <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>Geodesic representation of the Schwarzschild-like black hole (30), considering <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>≫</mo> <mi>M</mi> </mrow> </semantics></math>, for the parameters <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>4</mn> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. For the representation, the initial radius is denoted by <math display="inline"><semantics> <msub> <mi>r</mi> <mn>0</mn> </msub> </semantics></math>, with initial time <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Geodesic representation of the Schwarzschild-like black hole (30), considering <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>≪</mo> <mi>M</mi> </mrow> </semantics></math>, for the parameters <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>2</mn> </msup> </mrow> </semantics></math>. For the representation, the initial radius is denoted by <math display="inline"><semantics> <msub> <mi>r</mi> <mn>0</mn> </msub> </semantics></math>, with initial time <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Behavior of <math display="inline"><semantics> <msub> <mi>r</mi> <mi>H</mi> </msub> </semantics></math> compared to <math display="inline"><semantics> <mi>ω</mi> </semantics></math>, considering three different black hole masses: <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>2</mn> </msup> </mrow> </semantics></math>, represented by the colors purple, red, and blue, respectively. To capture all global behavior, 35 different values were considered for the <math display="inline"><semantics> <mi>ω</mi> </semantics></math> parameter. For <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>, values were between <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mn>10</mn> <mn>3</mn> </msup> </semantics></math>. For <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, values were between <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mn>10</mn> <mn>4</mn> </msup> </semantics></math>. For <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>2</mn> </msup> </mrow> </semantics></math>, values were between <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mn>10</mn> <mn>5</mn> </msup> </semantics></math>.</p> "> Figure 6
<p>Behavior of <math display="inline"><semantics> <msub> <mi>r</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>crit</mi> </mrow> </msub> </semantics></math> compared to <math display="inline"><semantics> <mi>ω</mi> </semantics></math>, considering three different black hole masses: <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>2</mn> </msup> </mrow> </semantics></math>, represented by the colors purple, red, and blue, respectively. To capture all global behavior, 35 different values were considered for the <math display="inline"><semantics> <mi>ω</mi> </semantics></math> parameter. For <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>, values were between <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mn>10</mn> <mn>3</mn> </msup> </semantics></math>. For <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, values were between <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mn>10</mn> <mn>4</mn> </msup> </semantics></math>. For <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>2</mn> </msup> </mrow> </semantics></math>, values were between <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mn>10</mn> <mn>5</mn> </msup> </semantics></math>.</p> "> Figure 7
<p>Behavior of <math display="inline"><semantics> <msub> <mi>r</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>crit</mi> </mrow> </msub> </semantics></math> compared to <math display="inline"><semantics> <msub> <mi>r</mi> <mi>H</mi> </msub> </semantics></math>, considering three different black hole masses: <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>2</mn> </msup> </mrow> </semantics></math>, represented by the colors purple, red, and blue, respectively. To capture all global behavior, 35 different values were considered for the <math display="inline"><semantics> <mi>ω</mi> </semantics></math> parameter. For <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>, values were between <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mn>10</mn> <mn>3</mn> </msup> </semantics></math>. For <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, values were between <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mn>10</mn> <mn>4</mn> </msup> </semantics></math>. For <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>2</mn> </msup> </mrow> </semantics></math>, values were between <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mn>10</mn> <mn>5</mn> </msup> </semantics></math>.</p> "> Figure 8
<p>Global behavior of the standard Ricci scalar (built from the Levi–Civita part of the connection) as function of the distance, assuming <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>Geodesic representation of the Schwarzschild-like black hole (36), considering <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mi>M</mi> </mrow> </semantics></math>, for the parameters <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. For the representation, the initial radius is denoted by <math display="inline"><semantics> <msub> <mi>r</mi> <mn>0</mn> </msub> </semantics></math>, with initial time <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>.</p> "> Figure 10
<p>Geodesic representation of the Schwarzschild-like black hole (36), considering <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>≫</mo> <mi>M</mi> </mrow> </semantics></math>, for the parameters <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>2</mn> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. For the representation, the initial radius is denoted by <math display="inline"><semantics> <msub> <mi>r</mi> <mn>0</mn> </msub> </semantics></math>, with initial time <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>.</p> "> Figure 11
<p>Geodesic representation of the Schwarzschild-like black hole (36), considering <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>≪</mo> <mi>M</mi> </mrow> </semantics></math>, for the parameters <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>2</mn> </msup> </mrow> </semantics></math>. For the representation, the initial radius is denoted by <math display="inline"><semantics> <msub> <mi>r</mi> <mn>0</mn> </msub> </semantics></math>, with initial time <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>.</p> "> Figure 12
<p>Behavior of <math display="inline"><semantics> <msub> <mi>r</mi> <mrow> <mi>H</mi> <mo>,</mo> <mi>ext</mi> </mrow> </msub> </semantics></math> compared to <math display="inline"><semantics> <mi>ω</mi> </semantics></math>, considering three different black hole masses: <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>2</mn> </msup> </mrow> </semantics></math>, represented by the colors purple, red, and blue, respectively. To capture all global behavior, 35 different values were considered for the <math display="inline"><semantics> <mi>ω</mi> </semantics></math> parameter. For <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>, values were between <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mn>10</mn> <mn>3</mn> </msup> </semantics></math>. For <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, values were between <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mn>10</mn> <mn>4</mn> </msup> </semantics></math>. For <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>2</mn> </msup> </mrow> </semantics></math>, values were between <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mn>10</mn> <mn>5</mn> </msup> </semantics></math>.</p> "> Figure 13
<p>Behavior of <math display="inline"><semantics> <msub> <mi>r</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>crit</mi> </mrow> </msub> </semantics></math> compared to <math display="inline"><semantics> <mi>ω</mi> </semantics></math>, considering three different black hole masses: <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>2</mn> </msup> </mrow> </semantics></math>, represented by the colors purple, red, and blue, respectively. To capture all global behavior, 35 different values were considered for the <math display="inline"><semantics> <mi>ω</mi> </semantics></math> parameter. For <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>, values were between <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mn>10</mn> <mn>3</mn> </msup> </semantics></math>. For <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, values were between <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mn>10</mn> <mn>4</mn> </msup> </semantics></math>. For <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>2</mn> </msup> </mrow> </semantics></math>, values were between <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mn>10</mn> <mn>5</mn> </msup> </semantics></math>.</p> "> Figure 14
<p>Behavior of <math display="inline"><semantics> <msub> <mi>r</mi> <mrow> <mi>H</mi> <mo>,</mo> <mi>ext</mi> </mrow> </msub> </semantics></math> compared to <math display="inline"><semantics> <msub> <mi>r</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>crit</mi> </mrow> </msub> </semantics></math>, considering three different black hole masses: <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>2</mn> </msup> </mrow> </semantics></math>, represented by the colors purple, red, and blue, respectively. To capture all global behavior, 35 different values were considered for the <math display="inline"><semantics> <mi>ω</mi> </semantics></math> parameter. For <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>, values were between <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mn>10</mn> <mn>3</mn> </msup> </semantics></math>. For <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, values were between <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mn>10</mn> <mn>4</mn> </msup> </semantics></math>. For <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>2</mn> </msup> </mrow> </semantics></math>, values were between <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mn>10</mn> <mn>5</mn> </msup> </semantics></math>.</p> "> Figure 15
<p>Global behavior of the scalar curvature <math display="inline"><semantics> <mover accent="true"> <mi>R</mi> <mo>¯</mo> </mover> </semantics></math> as a function of the distance, assuming <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>Q</mi> <mo stretchy="false">˜</mo> </mover> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 16
<p>Global behavior of the standard Ricci scalar (built from the Levi–Civita part of the connection) as a function of the distance, assuming <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>Q</mi> <mo stretchy="false">˜</mo> </mover> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Non-Minimal Matter–Curvature Coupling with Weyl Connection
2.1. Geodesic Motion
2.2. Maxwell Equations
2.3. Static Spherically Symmetric Ansatz
3. Schwarzschild-like Black Hole
3.1. Vacuum
3.1.1. First Case:
3.1.2. Second Case:
3.2. Cosmological Constant Background
3.3. Thermodynamics
3.3.1. Schwarzschild-like Black Hole: First Case
3.3.2. Schwarzschild-like Black Hole: Second Case
4. Reissner–Nordstrøm-Like Black Hole
4.1. Vacuum Background
4.2. Cosmological Constant Background
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Generalized Riemann Curvature Tensor Components
Appendix A.1. First Ansatz: Aμ = (0, A(r), 0, 0)
Appendix A.2. Second Ansatz: Aμ = (A0(r), A1(r), 0, 0)
References
- Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rep. 2011, 509, 167–321. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.; Oikonomou, V. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f(R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451–497. [Google Scholar] [CrossRef]
- De Felice, A.; Tsujikawa, S. f(R) Theories. Living Rev. Relativ. 2010, 13, 3. [Google Scholar] [CrossRef]
- Bertolami, O.; Böhmer, C.G.; Harko, T.; Lobo, F.S.N. Extra force in f(R) modified theories of gravity. Phys. Rev. D 2007, 75, 104016. [Google Scholar] [CrossRef]
- Bertolami, O.; Páramos, J. Mimicking dark matter through a non-minimal gravitational coupling with matter. J. Cosmol. Astropart. Phys. 2010, 03, 009. [Google Scholar] [CrossRef]
- Bertolami, O.; Frazão, P.; Páramos, J. Mimicking dark matter in galaxy clusters through a nonminimal gravitational coupling with matter. Phys. Rev. D 2012, 86, 044034. [Google Scholar] [CrossRef]
- Bertolami, O.; Frazão, P.; Páramos, J. Accelerated expansion from a nonminimal gravitational coupling to matter. Phys. Rev. D 2010, 81, 104046. [Google Scholar] [CrossRef]
- Bertolami, O.; Gomes, C. The Layzer-Irvine equation in theories with non-minimal coupling between matter and curvature. J. Cosmol. Astropart. Phys. 2014, 09, 010. [Google Scholar] [CrossRef]
- Olmo, G.J.; Rubiera-Garcia, D. Brane-world and loop cosmology from a gravity–matter coupling perspective. Phys. Lett. B 2015, 740, 73–79. [Google Scholar] [CrossRef]
- Gomes, C.; Rosa, J.; Bertolami, O. Inflation in non-minimal matter-curvature coupling theories. J. Cosmol. Astropart. Phys. 2017, 6, 21. [Google Scholar] [CrossRef]
- Bertolami, O.; Gomes, C.; Lobo, F.S.N. Gravitational waves in theories with a non-minimal curvature-matter coupling. Eur. Phys. J. C 2018, 78, 303. [Google Scholar] [CrossRef]
- Ferreira, T.D.; Silva, N.A.; Bertolami, O.; Gomes, C.; Guerreiro, A. Simulating N-body systems for alternative theories of gravity using solvers from nonlocal optics. In Proceedings of the Fourth International Conference on Applications of Optics and Photonics, Lisbon, Portugal, 31 May–4 June 2019; Costa, M.F.P.C.M.M., Ed.; SPIE: Bellingham, WA USA, 2019; Volume 11207, p. 1120710. [Google Scholar] [CrossRef]
- Ferreira, T.D.; Silva, N.A.; Bertolami, O.; Gomes, C.; Guerreiro, A. Using numerical methods from nonlocal optics to simulate the dynamics of N-body systems in alternative theories of gravity. Phys. Rev. E 2020, 101, 023301. [Google Scholar] [CrossRef]
- Bertolami, O.; Gomes, C. Nonminimally coupled Boltzmann equation: Foundations. Phys. Rev. D 2020, 102, 084051. [Google Scholar] [CrossRef]
- Gomes, C. Jeans instability in non-minimal matter-curvature coupling gravity. Eur. Phys. J. C 2020, 80, 633. [Google Scholar] [CrossRef]
- Gomes, C.; Ourabah, K. Quantum kinetic theory of Jeans instability in non-minimal matter-curvature coupling gravity. Eur. Phys. J. C 2023, 83, 40. [Google Scholar] [CrossRef]
- March, R.; Bertolami, O.; Muccino, M.; Gomes, C.; Dell’Agnello, S. Cassini and extra force constraints to nonminimally coupled gravity with a screening mechanism. Phys. Rev. D 2022, 105, 044048. [Google Scholar] [CrossRef]
- Bertolami, O.; Lima, M.M.; Mena, F.C. Primordial magnetic fields in theories of gravity with non-minimal coupling between curvature and matter. Gen. Relativ. Grav. 2022, 54, 82. [Google Scholar] [CrossRef]
- Bertolami, O.; Gomes, C.; Sá, P.M. Theories of gravity with nonminimal matter-curvature coupling and the de Sitter swampland conjectures. Phys. Rev. D 2023, 107, 084009. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T.S. The Geometrical Trinity of Gravity. Universe 2019, 5, 173. [Google Scholar] [CrossRef]
- Linder, E.V. Einstein’s other gravity and the acceleration of the Universe. Phys. Rev. D 2010, 81, 127301. [Google Scholar] [CrossRef]
- Jiménez, J.B.; Heisenberg, L.; Koivisto, T. Coincident general relativity. Phys. Rev. D 2018, 98, 044048. [Google Scholar] [CrossRef]
- Heisenberg, L. Review on f(Q) gravity. Phys. Rep. 2024, 1066, 1–78. [Google Scholar] [CrossRef]
- Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D. Coupling matter in modified Q gravity. Phys. Rev. D 2018, 98, 084043. [Google Scholar] [CrossRef]
- Kaluza, T. Zum Unitätsproblem in der Physik. K. Preuss. Akad. Wiss 1921, 1, 966. [Google Scholar]
- Klein, O. Quantentheorie und fünfdimensionale Relativitätstheorie. Z. Phys. 1926, 37, 895–906. [Google Scholar] [CrossRef]
- Cheng, H. Possible Existence of Weyl’s Vector Meson. Phys. Rev. Lett. 1988, 61, 2182–2184. [Google Scholar] [CrossRef]
- Aringazin, A.K.; Mikhailov, A.L. Matter fields in spacetime with vector nonmetricity. Class. Quantum Gravity 1991, 8, 1685. [Google Scholar] [CrossRef]
- Ne’eman, Y.; Hehl, F.W. Test matter in a spacetime with nonmetricity. Class. Quantum Gravity 1997, 14, A251. [Google Scholar] [CrossRef]
- Gomes, C.; Bertolami, O. Nonminimally coupled Weyl gravity. Class. Quantum Gravity 2019, 36, 235016. [Google Scholar] [CrossRef]
- Baptista, R.; Bertolami, O. Cosmological solutions of the non-minimally coupled Weyl connection gravity theories. Class. Quantum Gravity 2020, 37, 085011. [Google Scholar] [CrossRef]
- Baptista, R.; Bertolami, O. An Ostrogradsky instability analysis of non-minimally coupled Weyl connection gravity theories. Gen. Relativ. Gravit. 2021, 53, 21. [Google Scholar] [CrossRef]
- de la Cruz-Dombriz, A.; Dobado, A.; Maroto, A.L. Black holes in f(R) theories. Phys. Rev. D 2009, 80, 124011. [Google Scholar] [CrossRef]
- Capozziello, S.; Laurentis, M.D.; Stabile, A. Axially symmetric solutions in f(R)-gravity. Class. Quantum Gravity 2010, 27, 165008. [Google Scholar] [CrossRef]
- Moon, T.; Myung, Y.S.; Son, E.J. f(R) black holes. Gen. Relativ. Gravit. 2011, 43, 3079–3098. [Google Scholar] [CrossRef]
- Rostami, M.; Sadeghi, J.; Miraboutalebi, S. The static black hole in f(R) gravity with thermal corrections and phase transition. Phys. Dark Universe 2020, 29, 100590. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Capozziello, S. Charged spherically symmetric black holes in f(R) gravity and their stability analysis. Phys. Rev. D 2019, 99, 104018. [Google Scholar] [CrossRef]
- Bertolami, O.; Cadoni, M.; Porru, A. Black hole solutions of gravity theories with non-minimal coupling between matter and curvature. Class. Quantum Gravity 2015, 32, 205009. [Google Scholar] [CrossRef]
- Yang, J.-Z.; Shahidi, S.; Harko, T. Black hole solutions in the quadratic Weyl conformal geometric theory of gravity. Eur. Phys. J. C 2022, 82, 1171. [Google Scholar] [CrossRef]
- Momennia, M.; Hendi, S. Quasinormal modes of black holes in Weyl gravity: Electromagnetic and gravitational perturbations. Eur. Phys. J. C 2020, 80, 505. [Google Scholar] [CrossRef]
- Wald, R. The Thermodynamics of Black Holes. Living Rev. Rel. 2001, 4, 6. [Google Scholar] [CrossRef]
- Heisenberg, L.; Kase, R.; Minamitsuji, M.; Tsujikawa, S. Black holes in vector-tensor theories. J. Cosmol. Astropart. Phys. 2017, 8, 24. [Google Scholar] [CrossRef]
- Fan, Z.Y. Black holes in vector-tensor theories and their thermodynamics. Eur. Phys. J. C 2018, 78, 65. [Google Scholar] [CrossRef]
- Mureika, J.R.; Moffat, J.W.; Faizal, M. Black hole thermodynamics in MOdified Gravity (MOG). Phys. Lett. B 2016, 757, 528–536. [Google Scholar] [CrossRef]
- Ghaderi, K.; Malakolkalami, B. Thermodynamics of the Schwarzschild and the Reissner–Nordström black holes with quintessence. Nucl. Phys. B 2016, 903, 10–18. [Google Scholar] [CrossRef]
- Gomes, D.; Maluf, R.; Almeida, C. Thermodynamics of Schwarzschild-like black holes in modified gravity models. Ann. Phys. 2020, 418, 168198. [Google Scholar] [CrossRef]
- Sebastiani, L.; Zerbini, S. Static spherically symmetric solutions in F(R) gravity. Eur. Phys. J. C 2011, 71, 1591. [Google Scholar] [CrossRef]
- Brown, J.D. Action functionals for relativistic perfect fluids. Class. Quantum Gravity 1993, 10, 1579. [Google Scholar] [CrossRef]
- Bertolami, O.; Lobo, F.S.N.; Páramos, J. Nonminimal coupling of perfect fluids to curvature. Phys. Rev. D 2008, 78, 064036. [Google Scholar] [CrossRef]
- Henry, R.C. Kretschmann Scalar for a Kerr-Newman Black Hole. Astrophys. J. 2000, 535, 350. [Google Scholar] [CrossRef]
- Campista, M.; Chan, R.; da Silva, M.; Goldoni, O.; Satheeshkumar, V.; Villas da Rocha, J.F. Vacuum solutions in the Einstein–Aether Theory. Can. J. Phys. 2020, 98, 917–928. [Google Scholar] [CrossRef]
- Chan, R.; Silva, M.; Satheeshkumar, V. Spherically symmetric analytic solutions and naked singularities in Einstein–Aether theory. Eur. Phys. J. C 2021, 81, 317. [Google Scholar] [CrossRef]
- Capozziello, S.; De Bianchi, S.; Battista, E. Avoiding singularities in Lorentzian-Euclidean black holes: The role of atemporality. Phys. Rev. D 2024, 109, 104060. [Google Scholar] [CrossRef]
- Nashed, G. Extension of Hayward black hole in f(R) gravity coupled with a scalar field. Phys. Dark Universe 2024, 44, 101462. [Google Scholar] [CrossRef]
- Yang, J.Z.; Shahidi, S.; Harko, T.; Liang, S.D. Black hole solutions in modified gravity induced by quantum metric fluctuations. Phys. Dark Universe 2021, 31, 100756. [Google Scholar] [CrossRef]
- Shankaranarayanan, S. Temperature and entropy of Schwarzschild–de Sitter space-time. Phys. Rev. D 2003, 67, 084026. [Google Scholar] [CrossRef]
- Ma, M.S.; Zhao, R. Corrected form of the first law of thermodynamics for regular black holes. Class. Quantum Gravity 2014, 31, 245014. [Google Scholar] [CrossRef]
- Maluf, R.V.; Neves, J.C.S. Thermodynamics of a class of regular black holes with a generalized uncertainty principle. Phys. Rev. D 2018, 97, 104015. [Google Scholar] [CrossRef]
- Glavan, D.; Lin, C. Einstein-Gauss-Bonnet Gravity in Four-Dimensional Spacetime. Phys. Rev. Lett. 2020, 124, 081301. [Google Scholar] [CrossRef]
M | |||
---|---|---|---|
1 | |||
1 | |||
1 | |||
1 | |||
M | |||
---|---|---|---|
1 | |||
1 | |||
1 | |||
1 | |||
no | no | ||
no | no | ||
no | no | ||
no | no | ||
for all | no | no | |
for all | no | no | |
1 | for all | no | no |
for all | no | no | |
for all | no | no | |
for all | no | no | |
for all | no | no |
no | no | ||
no | no | ||
1 | |||
no | no | ||
no | no | ||
1 | |||
no | no | ||
no | no | ||
1 | |||
no | no | ||
no | no | ||
1 | |||
1 | for all | no | no |
for all | no | no | |
for all | no | no | |
for all | no | no | |
for all | no | no |
no | no | ||
no | no | ||
1 | |||
no | no | ||
no | no | ||
1 | |||
no | no | ||
no | no | ||
1 | |||
for all | no | no | |
1 | for all | no | no |
for all | no | no | |
for all | no | no | |
for all | no | no | |
for all | no | no |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, M.M.; Gomes, C. Black Hole Solutions in Non-Minimally Coupled Weyl Connection Gravity. Universe 2024, 10, 433. https://doi.org/10.3390/universe10110433
Lima MM, Gomes C. Black Hole Solutions in Non-Minimally Coupled Weyl Connection Gravity. Universe. 2024; 10(11):433. https://doi.org/10.3390/universe10110433
Chicago/Turabian StyleLima, Maria Margarida, and Cláudio Gomes. 2024. "Black Hole Solutions in Non-Minimally Coupled Weyl Connection Gravity" Universe 10, no. 11: 433. https://doi.org/10.3390/universe10110433
APA StyleLima, M. M., & Gomes, C. (2024). Black Hole Solutions in Non-Minimally Coupled Weyl Connection Gravity. Universe, 10(11), 433. https://doi.org/10.3390/universe10110433