Comparative Numerical Analysis of Keyhole Shape and Penetration Depth in Laser Spot Welding of Aluminum with Power Wave Modulation
<p>Schematic depiction of (<b>a</b>) 2D axisymmetric configuration of laser welding with Gaussian distribution used in the simulation and (<b>b</b>,<b>c</b>) 3D illustration of the problem generated in COMSOL Multiphysics 5.6 with definitions of the transversal cross-section of the domain and the plane used to monitor the keyhole morphology and penetration.</p> "> Figure 2
<p>Complete schematic of all the laser energy pulse shapes used for power modulation for (<b>a</b>) MW10-MW14 and (<b>b</b>) MW15-MW17.</p> "> Figure 3
<p>Computational domain and the generated extra fine mapped mesh.</p> "> Figure 4
<p>Comparison of (<b>a</b>) the keyhole morphology between the simulation (orange) and experimental (blue) results of Qin et al. [<a href="#B33-thermo-04-00013" class="html-bibr">33</a>] and (<b>b</b>) the keyhole diameter on the surface.</p> "> Figure 5
<p>Schematic depiction of the keyhole, molten pool, driving forces and pressures, mushy zone, solidus, and liquidus temperature lines.</p> "> Figure 6
<p>Keyhole penetration procedure for case LC10 with 6 kW laser power, 3 ms pulse width, and 300 µm spot radius.</p> "> Figure 6 Cont.
<p>Keyhole penetration procedure for case LC10 with 6 kW laser power, 3 ms pulse width, and 300 µm spot radius.</p> "> Figure 7
<p>Morphology of keyhole for different spot radii after 2 ms of laser welding for (<b>a</b>) 300 µm spot radius, (<b>b</b>) 425 µm spot radius, (<b>c</b>) 525 µm spot radius, and (<b>d</b>) 725 µm spot radius.</p> "> Figure 8
<p>Morphology of keyhole for different laser frequencies after three pulses for (<b>a</b>) 50 Hz, (<b>b</b>) 100 Hz, and (<b>c</b>) 150 Hz.</p> "> Figure 9
<p>Morphology of keyhole for different laser frequencies at the end of the first and second pulse periods for (<b>a</b>) 50 Hz, (<b>b</b>) 100 Hz, and (<b>c</b>) 150 Hz.</p> "> Figure 9 Cont.
<p>Morphology of keyhole for different laser frequencies at the end of the first and second pulse periods for (<b>a</b>) 50 Hz, (<b>b</b>) 100 Hz, and (<b>c</b>) 150 Hz.</p> "> Figure 10
<p>Morphology of keyhole for different laser powers after 3 ms for (<b>a</b>) 2 kW, (<b>b</b>) 4 kW, and (<b>c</b>) 6 kW.</p> "> Figure 11
<p>Morphology of the keyhole for different pulse widths of (<b>a</b>) 0.5 ms, (<b>b</b>) 1 ms, (<b>c</b>) 2 ms, and (<b>d</b>) 3 ms.</p> "> Figure 12
<p>Morphology of the keyhole for different numbers of pulses: (<b>a</b>) 2 pulses, (<b>b</b>) 6 pulses, (<b>c</b>) 10 pulses, (<b>d</b>) 14 pulses, and (<b>e</b>) 18 pulses.</p> "> Figure 13
<p>Morphology of keyhole for different pulse shapes, including (<b>a</b>) continuous welding, (<b>b</b>) rectangular pulse welding, (<b>c</b>) trapezium type 2, (<b>d</b>) trapezium type 1, (<b>e</b>) variant–rectangular, (<b>f</b>) triangular pulse welding, (<b>g</b>) rectangular–trapezium, (<b>h</b>) rectangular–triangular, and (<b>i</b>) rectangular–rectangular (rectangular).</p> "> Figure 14
<p>Maximum temperature variations within Domain 2, considering different (<b>a</b>) laser spot radii, (<b>b</b>) laser frequencies, and (<b>c</b>) laser powers.</p> "> Figure 15
<p>Maximum temperature variations within Domain 2, considering different (<b>a</b>) pulse widths and (<b>b</b>) pulse numbers.</p> "> Figure 16
<p>Maximum temperature variations within Domain 2, considering different pulse shapes, compared to CW for (<b>a</b>) MW10-14 and (<b>b</b>) MW15-1.</p> ">
Abstract
:1. Introduction
2. System Description and Material
3. Numerical Approach and Methods
3.1. Heat and Fluid Flow Model
- The flow of molten material inside the fusion zone was assumed Newtonian, incompressible, and laminar.
- The temperature-dependent effects on the thermophysical properties and absorption coefficients were neglected for the sake of simulation simplicity.
- A porous medium, saturated with the liquid molten metal, was assumed for the mushy zone [34].
- A Gaussian laser beam distribution was assumed for the heat source.
- The impact of natural convection was added using the Boussinesq approximation [40].
- Plasma and the Knudsen layer were not taken into account.
- Multiple reflections of the laser beam were neglected in this model.
- The vaporized material known as metallic vapor was considered an ideal gas and transparent to the incoming laser beam.
- The thermal enthalpy porosity technique was used to track the solid/liquid interface and adds the impacts of temperature-dependent phase transitions (melting and vaporization) on the specific heat capacity in the heat transfer model [34].
3.2. Governing Equations
3.2.1. Modified Mixture Theory
Conduction Mode
Transition and Keyhole Mode
3.2.2. Tracking the Solid/Liquid Interface
Thermal Enthalpy Porosity Technique
3.2.3. Tracking the Vapor/Liquid Interface
Modified Level-Set Method
3.2.4. Definition of Source Terms and Driving Forces on the Interface
Recoil Pressure, Mass Loss, and Evaporative Source Term of Heat Flux
3.2.5. Definition of the Surface Tension Impact and Boussinesq Approximation
3.2.6. Definition of the Heat Source and Evaporative Energy Equation
3.3. Numerical Schemes
Sensitivity Analysis of the Numerical Parameters
4. Results and Discussions
4.1. Accuracy Verification of Simulation Results Using Experimental Validation
4.2. Physical Phenomena in Laser Welding
4.3. Analyzing the Impact of Laser Characteristics on the Morphology of the Keyhole
4.3.1. Effect of Spot Radius
4.3.2. Impact of Laser Frequency
4.3.3. Impact of Laser Power
4.4. Analyzing the Impact of Modulated Wave Welding on the Morphology of the Keyhole
4.4.1. Impact of Pulse Width
4.4.2. Impact of Pulse Number
4.4.3. Impact of Pulse Shape
4.5. Temperature Variations within the Base Metal
5. Conclusions
- The more the spot radius is enhanced, the smaller the keyhole penetration depth, and the more intense the melt ejection. A reduction of over 80% in the keyhole penetration depth is observed with an increase in the spot radius.
- As the laser frequency increases, the keyhole wall instabilities and the tendency of the keyhole to collapse are amplified while the keyhole penetration depth is increased to some extent.
- With an increase in laser power from 2 kW to 6 kW, the keyhole penetration depth is improved by more than 80%.
- Extending the pulse width from 0.5 ms to 3 ms leads to an increase of over 80% in the keyhole penetration depth. Moreover, the keyhole wall becomes more unstable as pulse width is extended.
- If the welding duration is maintained at 0.01 s, the keyhole penetration depth increases significantly when using higher pulse numbers. However, more keyhole fluctuations and instabilities are observed due to multiple laser on-and-offs.
- The rectangular pulse shape has the greatest keyhole penetration depth among various pulse shapes, while variant–rectangular pulse shapes and triangular pulse shapes produce more keyhole stability with smaller depth/width ratios.
- At the end of the welding process, higher temperatures within the base metal, achieved during CW laser welding, do not necessarily correspond to deeper keyholes and welding efficiency.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Melting temperature; [K] | |
Vaporization temperature; [K] | |
Solidus temperature; [K] | |
Temperature; [K] | |
Smoothing interval of melting; [K] | |
Smoothing interval of vaporization; [K] | |
Thermal conductivity of solid; [W/m/K] | |
Thermal conductivity of liquid; [W/m/K] | |
Thermal conductivity of gas; [W/m/K] | |
Latent heat of fusion; [J/kg] | |
Latent heat of evaporation; [J/kg] | |
Universal gas constant; [J/mol/K] | |
Specific heat of solid; [J/kg/K] | |
Specific heat of liquid; [J/kg/K] | |
Specific heat of gas; [J/kg/K] | |
Equivalent specific heat capacity; [J/kg/K] | |
Dynamic viscosity of solid; [Pa.s] | |
Dynamic viscosity of liquid; [Pa.s] | |
Dynamic viscosity of gas; [Pa.s] | |
Form factor for Gaussian distribution | |
Coefficient in Darcy’s law | |
Coefficient in Darcy’s law | |
Effective radius of a laser beam; [m] | |
Dendrite dimension; [m] | |
Molecular mass of aluminum; [kg/mol] | |
Convective heat transfer coefficient; [W/m2/K] | |
Laser frequency; [Hz] | |
Gravity; [m/s2] | |
Pressure; [atm] | |
Velocity; [m/s] | |
Time; [s] | |
Darcy damping Force; [N/m3] | |
Buoyancy force; [N/m3] | |
Volume fraction of fluid 1 | |
Volume fraction of fluid 2 | |
Gauss function around the melting temperature | |
Gauss function around the vaporization temperature | |
Constant representing the mushy zone morphology; [1/m2] | |
Saturated vapor pressure; [atm] | |
Atmospheric pressure; [atm] | |
Volume fraction of liquid | |
Volume fraction of solid | |
Normal vector on the vapor/liquid interface | |
Tangential vector on the vapor/liquid interface | |
Temporal laser distribution function used to apply pulses | |
Greek | |
Level-set parameter; [m/s] | |
Level-set parameter; [m] | |
Delta function | |
Level-set function (variable) | |
Absorptivity of aluminum on 1064 nm laser | |
Surface emissivity | |
Thermal expansion coefficient; [1/K] | |
Retro-diffusion coefficient | |
Density; [kg/m3] | |
Dynamic viscosity; [Pa.s] | |
Surface tension coefficient; [N/m] | |
Subscript | |
L | Liquid |
V | Vapor/vaporization |
m | Melting |
Vol | Volume force |
g | Gas |
st | Surface tension |
Abbreviation | |
LS | Level-set |
MW | Modulated wave |
LC | Laser characteristics |
CW | Continuous wave |
References
- Gao, Z.; Jiang, P.; Mi, G.; Cao, L.; Liu, W. Investigation on the weld bead profile transformation with the keyhole and molten pool dynamic behavior simulation in high power laser welding. Int. J. Heat Mass Transf. 2018, 116, 1304–1313. [Google Scholar] [CrossRef]
- Katayama, S.; Kawahito, Y.; Mizutani, M. Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects. Phys. Procedia 2010, 5, 9–17. [Google Scholar] [CrossRef]
- Quintino, L.; Costa, A.; Miranda, R.; Yapp, D.; Kumar, V.; Kong, C.J. Welding with high power fiber lasers—A preliminary study. Mater. Des. 2007, 28, 1231–1237. [Google Scholar] [CrossRef]
- Dal, M.; Fabbro, R. [INVITED] An overview of the state of art in laser welding simulation. Opt. Laser Technol. 2016, 78, 2–14. [Google Scholar] [CrossRef]
- Steen, W.M.; Mazumder, J. Laser Material Processing; Springer: London, UK, 2010. [Google Scholar] [CrossRef]
- Assuncao, E.; Williams, S. Comparison of continuous wave and pulsed wave laser welding effects. Opt. Lasers Eng. 2013, 51, 674–680. [Google Scholar] [CrossRef]
- Cavilha Neto, F.; Pereira, M.; dos Santos Paes, L.E.; Fredel, M.C. Assessment of power modulation formats on penetration depth for laser welding. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 286. [Google Scholar] [CrossRef]
- Hajavifard, R.; Motahari, M.; Özden, H.; Miyanaji, H.; Kafashi, S. The Effects of Pulse Shaping Variation in Laser Spot-Welding of Aluminum. Procedia Manuf. 2016, 5, 232–247. [Google Scholar] [CrossRef]
- Svenungsson, J.; Choquet, I.; Kaplan, A.F.H. Laser Welding Process—A Review of Keyhole Welding Modelling. Phys. Procedia 2015, 78, 182–191. [Google Scholar] [CrossRef]
- Courtois, M.; Carin, M.; Masson, P.L.; Gaied, S.; Balabane, M. A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding. J. Phys. Appl. Phys. 2013, 46, 505305. [Google Scholar] [CrossRef]
- Bunaziv, I.; Dørum, C.; Nielsen, S.E.; Suikkanen, P.; Ren, X.; Nyhus, B.; Eriksson, M.; Akselsen, O.M. Laser-arc hybrid welding of 12- and 15-mm thick structural steel. Int. J. Adv. Manuf. Technol. 2020, 107, 2649–2669. [Google Scholar] [CrossRef]
- Tan, W.; Shin, Y.C. Analysis of multi-phase interaction and its effects on keyhole dynamics with a multi-physics numerical model. J. Phys. Appl. Phys. 2014, 47, 345501. [Google Scholar] [CrossRef]
- Wu, D.; Hua, X.; Li, F.; Huang, L. Understanding of spatter formation in fiber laser welding of 5083 aluminum alloy. Int. J. Heat Mass Transf. 2017, 113, 730–740. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, H. Weld defect classification in radiographic images using unified deep neural network with multi-level features. J. Intell. Manuf. 2021, 32, 459–469. [Google Scholar] [CrossRef]
- Frostevarg, J. Factors affecting weld root morphology in laser keyhole welding. Opt. Lasers Eng. 2018, 101, 89–98. [Google Scholar] [CrossRef]
- Eshtayeh, M.; Hijazi, A.; Hrairi, M. Nondestructive Evaluation of Welded Joints Using Digital Image Correlation. J. Nondestruct. Eval. 2015, 34, 37. [Google Scholar] [CrossRef]
- Lee, J.Y.; Ko, S.H.; Farson, D.F.; Yoo, C.D. Mechanism of keyhole formation and stability in stationary laser welding. J. Phys. Appl. Phys. 2002, 35, 1570–1576. [Google Scholar] [CrossRef]
- Guo, W.; Wan, Z.; Peng, P.; Jia, Q.; Zou, G.; Peng, Y. Microstructure and mechanical properties of fiber laser welded QP980 steel. J. Mater. Process. Technol. 2018, 256, 229–238. [Google Scholar] [CrossRef]
- Lin, R.; Wang, H.; Lu, F.; Solomon, J.; Carlson, B.E. Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys. Int. J. Heat Mass Transf. 2017, 108, 244–256. [Google Scholar] [CrossRef]
- Pang, S.; Chen, W.; Zhou, J.; Liao, D. Self-consistent modeling of keyhole and weld pool dynamics in tandem dual beam laser welding of aluminum alloy. J. Mater. Process. Technol. 2015, 217, 131–143. [Google Scholar] [CrossRef]
- Wu, D.; Hua, X.; Ye, Y.; Huang, L.; Li, F.; Huang, Y. Experimental and numerical study of spatter formation and composition change in fiber laser welding of aluminum alloy. J. Phys. Appl. Phys. 2018, 51, 185604. [Google Scholar] [CrossRef]
- Pang, S.; Chen, X.; Li, W.; Shao, X.; Gong, S. Efficient multiple time scale method for modeling compressible vapor plume dynamics inside transient keyhole during fiber laser welding. Opt. Laser Technol. 2016, 77, 203–214. [Google Scholar] [CrossRef]
- Tan, W.; Bailey, N.S.; Shin, Y.C. Investigation of keyhole plume and molten pool based on a three-dimensional dynamic model with sharp interface formulation. J. Phys. Appl. Phys. 2013, 46, 055501. [Google Scholar] [CrossRef]
- Duggirala, A.; Kalvettukaran, P.; Acherjee, B.; Mitra, S. Numerical simulation of the temperature field, weld profile, and weld pool dynamics in laser welding of aluminium alloy. Optik 2021, 247, 167990. [Google Scholar] [CrossRef]
- Li, Z.; Yu, G.; He, X.; Li, S.; Li, H.; Li, Q. Study of thermal behavior and solidification characteristics during laser welding of dissimilar metals. Results Phys. 2019, 12, 1062–1072. [Google Scholar] [CrossRef]
- Courtois, M.; Carin, M.; Le Masson, P.; Gaied, S.; Balabane, M. A complete model of keyhole and melt pool dynamics to analyze instabilities and collapse during laser welding. J. Laser Appl. 2014, 26, 042001. [Google Scholar] [CrossRef]
- Medale, M.; Xhaard, C.; Fabbro, R. A thermo-hydraulic numerical model to study spot laser welding. Comptes Rendus Mécanique 2007, 335, 280–286. [Google Scholar] [CrossRef]
- Pang, S.; Chen, W.; Wang, W. A Quantitative Model of Keyhole Instability Induced Porosity in Laser Welding of Titanium Alloy. Metall. Mater. Trans. A 2014, 45, 2808–2818. [Google Scholar] [CrossRef]
- Matsunawa, A.; Seto, N.; Kim, J.-D.; Mizutani, M.; Katayama, S. Observation of Keyhole and Molten Pool Behaviour in High Power Laser Welding: Mechanism of Porosity Formation and Its Suppression Method; Joining and Welding Research Institute, Osaka University: Suita, Japan, 2001. [Google Scholar] [CrossRef]
- Matsunawa, A.; Seto, N.; Kim, J.-D.; Mizutani, M.; Katayama, S. Dynamics of keyhole and molten pool in high-power CO2 laser welding. In Advanced High-Power Lasers and Applications; Chen, X., Fujioka, T., Matsunawa, A., Eds.; SPIE: Osaka, Japan, 2000; p. 34. [Google Scholar] [CrossRef]
- Kawahito, Y.; Mizutani, M.; Katayama, S. High quality welding of stainless steel with 10 kW high power fibre laser. Sci. Technol. Weld. Join. 2009, 14, 288–294. [Google Scholar] [CrossRef]
- Ke, W.; Bu, X.; Oliveira, J.P.; Xu, W.; Wang, Z.; Zeng, Z. Modeling and numerical study of keyhole-induced porosity formation in laser beam oscillating welding of 5A06 aluminum alloy. Opt. Laser Technol. 2021, 133, 106540. [Google Scholar] [CrossRef]
- Qin, Y.; Dai, G.; Wang, B.; Ni, X.W.; Bi, J.; Zhang, X.H. Investigating the effect of gravity on long pulsed laser drilling. Opt. Laser Technol. 2011, 43, 563–569. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, Z.; Ni, X. Modeling and simulation on long pulse laser drilling processing. Int. J. Heat Mass Transf. 2014, 73, 429–437. [Google Scholar] [CrossRef]
- Cho, W.-I.; Schultz, V.; Woizeschke, P. Numerical study of the effect of the oscillation frequency in buttonhole welding. J. Mater. Process. Technol. 2018, 261, 202–212. [Google Scholar] [CrossRef]
- Zhang, T.-Z.; Jia, Z.-C.; Cui, H.-C.; Zhu, D.-H.; Ni, X.-W.; Lu, J. Analysis of melt ejection during long pulsed laser drilling. Chin. Phys. B 2016, 25, 054206. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, L.; Zhang, C.; Chen, X.; Li, J. Physical study of spatter and melt pool dynamics during millisecond laser metals drilling. Opt. Commun. 2021, 482, 126627. [Google Scholar] [CrossRef]
- Chen, G.; Liu, J.; Shu, X.; Gu, H.; Zhang, B. Numerical simulation of keyhole morphology and molten pool flow behavior in aluminum alloy electron-beam welding. Int. J. Heat Mass Transf. 2019, 138, 879–888. [Google Scholar] [CrossRef]
- Kong, F.; Kovacevic, R. Modeling of Heat Transfer and Fluid Flow in the Laser Multilayered Cladding Process. Metall. Mater. Trans. B 2010, 41, 1310–1320. [Google Scholar] [CrossRef]
- Ardahaie, S.S.; Hosseini, M.J.; Ranjbar, A.A.; Rahimi, M. Energy storage in latent heat storage of a solar thermal system using a novel flat spiral tube heat exchanger. Appl. Therm. Eng. 2019, 159, 113900. [Google Scholar] [CrossRef]
- Bonacina, C.; Comini, G.; Fasano, A.; Primicerio, M. Numerical solution of phase-change problems. Int. J. Heat Mass Transf. 1973, 16, 1825–1832. [Google Scholar] [CrossRef]
- Olsson, E.; Kreiss, G. A conservative level set method for two phase flow. J. Comput. Phys. 2005, 210, 225–246. [Google Scholar] [CrossRef]
- Mayi, Y.A.; Dal, M.; Peyre, P.; Bellet, M.; Metton, C.; Moriconi, C.; Fabbro, P. Laser-induced plume investigated by finite element modelling and scaling of particle entrainment in laser powder bed fusion. J. Phys. Appl. Phys. 2020, 53, 075306. [Google Scholar] [CrossRef]
- Tomashchuk, I.; Bendaoud, I.; Sallamand, P.; Cicala, E.; Lafaye, S.; Almuneau, M. Multiphysical modelling of keyhole formation during dissimilar laser welding. In Proceedings of the COMSOL Conference, Munich, Germany, 12–14 October 2016; p. 8. [Google Scholar]
- Wei, Z.; Jin, G.; Wang, Y. Numerical simulation of melt ejection during the laser drilling process on aluminum alloy by millisecond pulsed laser. In Proceedings of the Chinese Society for Optical Engineering Conferences, Suzhou, China, 22–28 November 2015; Bao, W., Lv, Y., Eds.; SPIE: Beijing, China, 2016; p. 979621. [Google Scholar] [CrossRef]
- Pang, S.; Chen, L.; Zhou, J.; Yin, Y.; Chen, T. A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding. J. Phys. Appl. Phys. 2011, 44, 025301. [Google Scholar] [CrossRef]
- Mayi, Y.A.; Dal, M.; Peyre, P.; Metton, C.; Moriconi, C.; Fabbro, R. An Original Way of Using COMSOL® Application Builder to Enhance Multiphysical Simulation of Laser Welding Processes. In Proceedings of the COMSOL Conference 2020, Virtual, 14–15 October 2020; p. 7. [Google Scholar]
- Geiger, M.; Leitz, K.-H.; Koch, H.; Otto, A. A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets. Prod. Eng. 2009, 3, 127–136. [Google Scholar] [CrossRef]
Property | Symbol | Magnitude |
---|---|---|
Solidus temperature | 847 (K) | |
Liquidus temperature | 905 (K) | |
Vaporization temperature | 2743 (K) | |
Solid density | 2700 (kg/m3) | |
Liquid density | 2385 (kg/m3) | |
Solid thermal conductivity | 238 (W/m/K) | |
Liquid thermal conductivity | 100 (W/m/K) | |
Liquid specific heat capacity | 917 (J/kg/K) | |
Solid specific heat capacity | 1080 (J/kg/K) | |
Latent heat of fusion | 3.896 × 105 (J/kg) | |
Latent heat of vaporization | 9.462 × 106 (J/kg) | |
Radiation emissivity | 0.2 | |
Convective heat transfer coefficient | h | 20 (W/m2/K) |
Thermal expansion coefficient | 2.36 × 10−5 (1/K) | |
Dynamic viscosity | 1.6 × 10−3 (Pa.s) | |
Surface tension coefficient | 0.95 × (1 + 0.13 × (1 − T/Tm))1.67 (N/m) | |
Surface tension coefficient with temperature | −0.3 × 10−3 (N/m/K) |
Case No. | Laser Power | Pulse Width | Number of Pulses | Frequency of Laser | Period of Pulse | Pulse Shape | Spot Radius | Total on Time |
---|---|---|---|---|---|---|---|---|
LC1 | 6 kW | 2 ms | 1 | 100 Hz | 0.01 s | Rectangular | 300 µm | 0.002 s |
LC2 | 6 kW | 2 ms | 1 | 100 Hz | 0.01 s | Rectangular | 425 µm | 0.002 s |
LC3 | 6 kW | 2 ms | 1 | 100 Hz | 0.01 s | Rectangular | 525 µm | 0.002 s |
LC4 | 6 kW | 2 ms | 1 | 100 Hz | 0.01 s | Rectangular | 725 µm | 0.002 s |
Impact of spot radius | ||||||||
LC5 | 6 kW | 1 ms | 3 | 50 Hz | 0.0066 s | Rectangular | 300 µm | 0.003 s |
LC6 | 6 kW | 1 ms | 3 | 100 Hz | 0.0033 s | Rectangular | 300 µm | 0.003 s |
LC7 | 6 kW | 1 ms | 3 | 150 Hz | 0.0022 s | Rectangular | 300 µm | 0.003 s |
Impact of frequency | ||||||||
LC8 | 2 kW | 3 ms | 1 | 100 Hz | 0.01 s | Rectangular | 300 µm | 0.003 s |
LC9 | 4 kW | 3 ms | 1 | 100 Hz | 0.01 s | Rectangular | 300 µm | 0.003 s |
LC10 | 6 kW | 3 ms | 1 | 100 Hz | 0.01 s | Rectangular | 300 µm | 0.003 s |
Impact of laser power | ||||||||
MW1 | 6 kW | 0.5 ms | 1 | 100 Hz | 0.01 s | Rectangular | 300 µm | 0.0005 s |
MW2 | 6 kW | 1 ms | 1 | 100 Hz | 0.01 s | Rectangular | 300 µm | 0.001 s |
MW3 | 6 kW | 2 ms | 1 | 100 Hz | 0.01 s | Rectangular | 300 µm | 0.002 s |
MW4 | 6 kW | 3 ms | 1 | 100 Hz | 0.01 s | Rectangular | 300 µm | 0.003 s |
Impact of Pulse width | ||||||||
MW5 | 4 kW | 0.5 ms | 2 | 100 Hz | 0.005 s | Rectangular | 300 µm | 0.001 s |
MW6 | 4 kW | 0.5 ms | 6 | 100 Hz | 0.0016 s | Rectangular | 300 µm | 0.003 s |
MW7 | 4 kW | 0.5 ms | 10 | 100 Hz | 0.001 s | Rectangular | 300 µm | 0.005 s |
MW8 | 4 kW | 0.5 ms | 14 | 100 Hz | 0.00071 s | Rectangular | 300 µm | 0.007 s |
MW9 | 4 kW | 0.5 ms | 18 | 100 Hz | 0.00055 s | Rectangular | 300 µm | 0.009 s |
Impact of pulse number | ||||||||
CW | 2 kW | 10 ms | 1 | 100 Hz | 0.01 s | Continuous | 300 µm | 0.01 s |
Impact of continuous laser welding | ||||||||
MW10 | 4 kW | 5 ms | 1 | 100 Hz | 0.01 s | Rectangular | 300 µm | 0.005 s |
MW11 | 4 kW | 8 ms | 1 | 100 Hz | 0.01 s | Trapezium | 300 µm | 0.008 s |
MW12 | 4 kW | 10 ms | 1 | 100 Hz | 0.01 s | Triangle | 300 µm | 0.01 s |
MW13 | 4 kW | 8 ms | 1 | 100 Hz | 0.01 s | Trap.: t2 | 300 µm | 0.008 s |
MW14 | 1–3 kW | Variant | 1 | 100 Hz | 0.01 s | Var.-Rect. | 300 µm | 0.01 s |
MW15 | 2–4 kW | Variant | 1 | 100 Hz | 0.01 s | Rect.-Tri. | 300 µm | 0.008 s |
MW16 | 2–3 kW | Variant | 1 | 100 Hz | 0.01 s | Rect.-Trap. | 300 µm | 0.008 s |
MW17 | 2–3 kW | Variant | 1 | 100 Hz | 0.01 s | Rect.-Rect. | 300 µm | 0.008 s |
Steps | Constant Values | Test Parameter | Values | Keyhole Depth |
---|---|---|---|---|
Step 1 | Time step: 10 μs | NOME | 16,968 | 4.128 mm |
24,320 | 4.011 mm | |||
37,500 | 3.948 mm | |||
48,045 | 3.921 mm | |||
Step 2 | 0.01 mm | Convergency error | ||
0.02 mm | 4.058 mm | |||
0.03 mm | 3.948 mm | |||
0.04 mm | 3.942 mm | |||
Step 3 | 1 m/s | 4.175 mm | ||
3 m/s | 3.948 mm | |||
5 m/s | 3.837 mm | |||
7 m/s | 3.839 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
SaediArdahaei, S.; Pham, X.-T. Comparative Numerical Analysis of Keyhole Shape and Penetration Depth in Laser Spot Welding of Aluminum with Power Wave Modulation. Thermo 2024, 4, 222-251. https://doi.org/10.3390/thermo4020013
SaediArdahaei S, Pham X-T. Comparative Numerical Analysis of Keyhole Shape and Penetration Depth in Laser Spot Welding of Aluminum with Power Wave Modulation. Thermo. 2024; 4(2):222-251. https://doi.org/10.3390/thermo4020013
Chicago/Turabian StyleSaediArdahaei, Saeid, and Xuan-Tan Pham. 2024. "Comparative Numerical Analysis of Keyhole Shape and Penetration Depth in Laser Spot Welding of Aluminum with Power Wave Modulation" Thermo 4, no. 2: 222-251. https://doi.org/10.3390/thermo4020013
APA StyleSaediArdahaei, S., & Pham, X. -T. (2024). Comparative Numerical Analysis of Keyhole Shape and Penetration Depth in Laser Spot Welding of Aluminum with Power Wave Modulation. Thermo, 4(2), 222-251. https://doi.org/10.3390/thermo4020013