Silver(I) Ions Ultrasensitive Detection at Carbon Electrodes―Analysis of Waters, Tobacco Cells and Fish Tissues
<p>Scheme of silver(I) ion fate in the environment.</p> ">
<p>(A) Distribution diagram of silver(I) ions make by MEDUSA [<a href="#b37-sensors-09-06934" class="html-bibr">37</a>,<a href="#b38-sensors-09-06934" class="html-bibr">38</a>]. (B) Effect of silver(I) ions on enzyme urease isolated from soya beans.</p> ">
<p>(A) DP voltammogram of 500 μM silver(I) ions concentration measured at carbon paste electrode. (B) Instrument consisted from potentiostat – PalmSens, plastic cell, peristaltic pump and three electrode system connected to the potentiostat (carbon tip or carbon pencil was used as working electrodes).</p> ">
<p><span class="html-italic">Carbon tip working electrode.</span> (A) Dependence of peak height of silver(I) ions (1 μM) on the accumulation time measured at 0 V; in inset: DP voltammograms measured at accumulation times 30, 60 and 90 s. (B and inset) Dependences of peak height on silver(I) ions concentration (accumulation time 240 s, accumulation potential 0 V). (C) Hydrodynamic voltammogram of silver(I) ions. Flow rate of 0.2 M acetate buffer (pH 5.0) was 0.5 mL/min.</p> ">
<p><span class="html-italic">Carbon pencil working electrode.</span> (A) Dependence of peak height of silver(I) ions (1 μM) on the accumulation time measured at 0 V; in inset: DP voltammograms measured at accumulation times 30, 60 and 120 s. (B and inset) Dependences of peak height on silver(I) ions concentration (accumulation time 240 s, accumulation potential 0 V). (C) Hydrodynamic voltammogram of silver(I) ions. Flow rate of 0.2 M acetate buffer (pH 5.0) was 0.5 mL/min.</p> ">
<p><span class="html-italic">Tobacco cells.</span> (A) Changes in viability of tobacco BY-2 cells treated with 0, 5 and 10 μM silver(I) ions for 4 days. (B) The influence of silver(I) ions on nuclei and chromatin condensation. (C) The content of silver(I) ions in the treated tobacco cells.</p> ">
<p><span class="html-italic">Guppies.</span> (A) HPLC-ED chromatograms of silver(I) ions detected in tissues of fish treated with 2.5 μM silver(I) ions; in inset: guppies in tanks. (B) The content of silver(I) ions in treated guppies.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Toxicity of Silver
2.2. Carbon Paste Electrode as a Tool for Determination of Silver(I) Ions
2.3. Microanalysis of Silver(I) Ions
2.4. Carbon Pencil
2.5. Silver(I) Ion Detection in Waters
2.6. Influence of Silver(I) Ions on Tobacco BY-2 Cell Suspension Culture
2.7. Influence of Silver(I) Ions on Guppies
3. Material and Methods
3.1. Chemicals, Materials and pH Measurements
3.2. High Performance Liquid Chromatography with Electrochemical Detection (HPLC-ED)
3.3. Electrochemical Measurement with Standard Potentiostat
3.4. Microanalysis of Silver(I) Ions
3.5. Silver Release Experiment–Water Samples
3.6. Tobacco BY-2 Cell Suspension Culture
3.7. Double Staining
3.8. Chromatin Staining
3.9. Automated Spectrometric Measurements–Effects of Silver(I) Ions on Activity of Urease
3.10. Guppies
3.11. Descriptive Statistics and Estimation of Detection Limits
4. Conclusions
Acknowledgments
References and Notes
- Bell, R.A.; Kramer, J.R. Structural chemistry and geochemistry of silver-sulfur compounds: Critical review. Environ. Toxicol. Chem 1999, 18, 9–22. [Google Scholar]
- Kramer, J.R.; Adams, N.W.H.; Manolopoulos, H.; Collins, P.V. Silver at an old mining camp, cobalt, Ontario, Canada. Environ. Toxicol. Chem 1999, 18, 23–29. [Google Scholar]
- Bury, N.R.; Galvez, F.; Wood, C.M. Effects of chloride, calcium, and dissolved organic carbon on silver toxicity: Comparison between rainbow trout and fathead minnows. Environ. Toxicol. Chem 1999, 18, 56–62. [Google Scholar]
- Bury, N.R.; McGeer, J.C.; Wood, C.M. Effects of altering freshwater chemistry on physiological responses of rainbow trout to silver exposure. Environ. Toxicol. Chem 1999, 18, 49–55. [Google Scholar]
- Krizkova, S.; Adam, V.; Kizek, R. Phytotoxicity of silver ions. Chem. Listy 2009, 103, 559–568. [Google Scholar]
- Kizek, R.; Vacek, J.; Trnkova, L.; Klejdus, B.; Kuban, V. Electrochemical biosensors in agricultural and environmental analysis. Chem. Listy 2003, 97, 1003–1006. [Google Scholar]
- Morgan, T.P.; Wood, C.M. A relationship between gill silver accumulation and acute silver toxicity in the freshwater rainbow trout: Support for the acute silver biotic ligand model. Environ. Toxicol. Chem 2004, 23, 1261–1267. [Google Scholar]
- Call, D.J.; Polkinghorne, C.N.; Markee, T.P.; Brooke, L.T.; Geiger, D.L.; Gorsuch, J.W.; Robillard, K.A. Silver toxicity to Chironomus tentans in two freshwater sediments. Environ. Toxicol. Chem 1999, 18, 30–39. [Google Scholar]
- Berry, W.J.; Cantwell, M.G.; Edwards, P.A.; Serbst, J.R.; Hansen, D.J. Predicting toxicity of sediments spiked with silver. Environ. Toxicol. Chem 1999, 18, 40–48. [Google Scholar]
- Krizkova, S.; Ryant, P.; Krystofova, O.; Adam, V.; Galiova, M.; Beklova, M.; Babula, P.; Kaiser, J.; Novotny, K.; Novotny, J.; Liska, M.; Malina, R.; Zehnalek, J.; Hubalek, J.; Havel, L.; Kizek, R. Multi-instrumental analysis of tissues of sunflower plants treated with silver(I) ions - Plants as bioindicators of environmental pollution. Sensors 2008, 8, 445–463. [Google Scholar]
- Mahajan, R.K.; Kaur, I.; Sharma, V.; Kumar, M. Sensor for silver(I) ion based on Schiff-base-p-tertbutylcalix[4] arene. Sensors 2002, 2, 417–423. [Google Scholar]
- Hogstrand, C.; Wood, C.M. Toward a better understanding of the bioavailability, physiology and toxicity of silver in fish: Implications for water quality criteria. Environ. Toxicol. Chem 1998, 17, 547–561. [Google Scholar]
- Hogstrand, C.; Galvez, F.; Wood, C.M. Toxicity, silver accumulation and metallothionein induction in freshwater rainbow trout during exposure to different silver salts. Environ. Toxicol. Chem 1996, 15, 1102–1108. [Google Scholar]
- Mann, R.M.; Ernste, M.J.; Bell, R.A.; Kramer, J.R.; Wood, C.M. Evaluation of the protective effects of reactive sulfide on the acute toxicity of silver to rainbow trout (Oncorhynchus mykiss). Environ. Toxicol. Chem 2004, 23, 1204–1210. [Google Scholar]
- Gorsuch, J.W.; Klaine, S.J. Toxicity and fate of silver in the environment. Environ. Toxicol. Chem 1998, 17, 537–538. [Google Scholar]
- Raoof, J.B.; Ojani, R.; Kiani, A. Kinetic determination of silver ion by its perturbation on Belousov-Zhabotinskii oscillating chemical reaction using potentiometric method. Anal. Sci 2004, 20, 883–886. [Google Scholar]
- Tsiouris, S.E.; Aravanopoulos, F.A.; Papadoyannis, I.N.; Sofoniou, M.K.; Samanidou, V.F.; Zachariadis, G.A.; Constantinidou, H.I.A. Soil silver mobility in areas subjected to cloud seeding with AgI. Fresenius Environ. Bull 2003, 12, 1059–1063. [Google Scholar]
- Purcell, T.W.; Peters, J.J. Sources of silver in the environment. Environ. Toxicol. Chem 1998, 17, 539–546. [Google Scholar]
- Purcell, T.W.; Peters, J.J. Historical impacts of environmental regulation of silver. Environ. Toxicol. Chem 1999, 18, 3–8. [Google Scholar]
- Blastik, O.; Hubalek, J.; Adam, V.; Prasek, J.; Beklova, M.; Singer, C.; Sures, B.; Trnkova, L.; Zehnalek, J.; Kizek, R. Ieee. Electrochemical sensor for determination of metallothionein as biomarker. IEEE Sensors 2006, 1–3, 1187–1190. [Google Scholar]
- Shamspur, T.; Mashhadizadeh, M.H.; Sheikhshoaie, I. Flame atomic absorption spectrometric determination of silver ion after preconcentration on octadecyl silica membrane disk modified with bis[5-((4-nitrophenyl)azosalicylaldehyde)] as a new Schiff base ligand. J. Anal. At. Spectrom 2003, 18, 1407–1410. [Google Scholar]
- Saeki, S.; Kubota, M.; Asami, T. Determination of silver in plants by flame atomic absorption spectrometry. Int. J. Environ. Anal. Chem 1996, 64, 179–183. [Google Scholar]
- Safavi, A.; Iranpoor, N.; Saghir, N. Directly silica bonded analytical reagents: synthesis of 2-mercaptobenzothiazole-silica gel and its application as a new sorbent for preconcentration and determination of silver ion using solid-phase extraction method. Sep. Purif. Technol 2004, 40, 303–308. [Google Scholar]
- Schildkraut, D.E.; Dao, P.T.; Twist, J.P.; Davis, A.T.; Robillard, K.A. Determination of silver ions at sub microgram-per-liter levels using anodic square-wave stripping voltammetry. Environ. Toxicol. Chem 1998, 17, 642–649. [Google Scholar]
- Zhang, S.B.; Zhang, X.J.; Lin, X.Q. An ethylenediaminetetraacetic acid modified carbon paste electrode for the determination of silver ion. Chin. J. Anal. Chem 2002, 30, 745–747. [Google Scholar]
- Guo, S.X.; Khoo, S.B. Highly selective and sensitive determination of silver(I) at a poly(8-mercaptoquinoline) film modified glassy carbon electrode. Electroanalysis 1999, 11, 891–898. [Google Scholar]
- Ye, X.Z.; Yang, Q.H.; Wang, Y.; Li, N.Q. Electrochemical behaviour of gold, silver, platinum and palladium on the glassy carbon electrode modified by chitosan and its application. Talanta 1998, 47, 1099–1106. [Google Scholar]
- Wang, J.; Lu, J.M.; Farias, P.A.M. Remote electrochemical monitoring of trace silver. Anal. Chim. Acta 1996, 318, 151–157. [Google Scholar]
- Mikelova, R.; Baloun, J.; Petrlova, J.; Adam, V.; Havel, L.; Petrek, H.; Horna, A.; Kizek, R. Electrochemical determination of Ag-ions in environment waters and their action on plant embryos. Bioelectrochemistry 2007, 70, 508–518. [Google Scholar]
- Huska, D.; Krizkova, S.; Hubalek, J.; Adam, V.; Beklova, M.; Trnkova, L.; Kizek, R. Employing of electroanalytical techniques for detection of silver(I) ions. Toxicol. Lett 2008, 180, S236–S237. [Google Scholar]
- Chaperon, S.; Sauve, S. Toxicity interaction of metals (Ag, Cu, Hg, Zn) to urease and dehydrogenase activities in soils. Soil Biol. Biochem 2007, 39, 2329–2338. [Google Scholar]
- Grosell, M.; Nielsen, C.; Bianchini, A. Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals. Comp. Biochem. Physiol. C-Toxicol. Pharmacol 2002, 133, 287–303. [Google Scholar]
- Blaedel, W.J.; Wang, J. Mixed immobilized enzyme-porous electrode reactor. Anal. Chem 1980, 52, 1426–1429. [Google Scholar]
- Karen, D.J.; Ownby, D.R.; Forsythe, B.L.; Bills, T.P.; La Point, T.W.; Cobb, G.B.; Klaine, S.J. Influence of water quality on silver toxicity to rainbow trout (Oncorhynchus mykiss), fathead minnows (Pimephales promelas), and water fleas (Daphnia magna). Environ. Toxicol. Chem 1999, 18, 63–70. [Google Scholar]
- Svancara, I.; Vytras, K.; Barek, J.; Zima, J. Carbon paste electrodes in modern electroanalysis. Crit. Rev. Anal. Chem 2001, 31, 311–345. [Google Scholar]
- Svancara, I.; Kalcher, K.; Diewald, W.; Vytras, K. Voltammetric determination of silver at ultratrace levels using a carbon paste electrode with improved surface characteristics. Electroanalysis 1996, 8, 336–342. [Google Scholar]
- Puigdomenech, I.; Bergstrom, U. Calculation of distribution coefficients for radionuclides in soils and sediments. Nucl. Saf 1995, 36, 142–154. [Google Scholar]
- Jagner, D.; Sahlin, E.; Renman, L. Experimental and computational study of species formed during electrochemical stripping oxidation of copper in chloride media - Determination of copper(Ii) in the NG 1(-1) range by stripping potentiometry. Talanta 1995, 42, 1447–1455. [Google Scholar]
- Babula, P.; Supalkova, V.; Adam, V.; Havel, L.; Beklova, M.; Sladky, Z.; Kizek, R. An influence of cisplatin on tobacco cell culture Nicotiana tabacum BY-2. Plant Soil Environ 2007, 53, 350–354. [Google Scholar]
- Vitecek, J.; Petrlova, J.; Petrek, J.; Adam, V.; Havel, L.; Kramer, K.J.; Kizek, R. Application of fluorimetric analysis of plant esterases to study of programmed cell death and effects of cadmium(II) ions. Biol. Plant 2007, 51, 551–555. [Google Scholar]
- Stejskal, K.; Krizkova, S.; Adam, V.; Sures, B.; Trnkova, L.; Zehnalek, J.; Hubalek, J.; Beklova, M.; Hanustiak, P.; Svobodova, Z.; Horna, A.; Kizek, R. Bio-assessing of environmental pollution via monitoring of metallothionein level using electrochemical detection. IEEE Sens. J 2008, 8, 1578–1585. [Google Scholar]
- Kizek, R.; Masarik, M.; Kramer, K.J.; Potesil, D.; Bailey, M.; Howard, J.A.; Klejdus, B.; Mikelova, R.; Adam, V.; Trnkova, L.; Jelen, F. An analysis of avidin, biotin and their interaction at attomole levels by voltammetric and chromatographic techniques. Anal. Bioanal. Chem 2005, 381, 1167–1178. [Google Scholar]
- Masarik, M.; Kizek, R.; Kramer, K.J.; Billova, S.; Brazdova, M.; Vacek, J.; Bailey, M.; Jelen, F.; Howard, J.A. Application of avidin-biotin technology and adsorptive transfer stripping square-wave voltammetry for detection of DNA hybridization and avidin in transgenic avidin maize. Anal. Chem 2003, 75, 2663–2669. [Google Scholar]
- Petrlova, J.; Krizkova, S.; Supalkova, V.; Masarik, M.; Adam, V.; Havel, L.; Kramer, K.J.; Kizek, R. The determination of avidin in genetically modified maize by voltammetric techniques. Plant Soil Environ 2007, 53, 345–349. [Google Scholar]
- Petrlova, J.; Masarik, M.; Potesil, D.; Adam, V.; Trnkova, L.; Kizek, R. Zeptomole detection of streptavidin using carbon paste electrode and square wave voltammetry. Electroanalysis 2007, 19, 1177–1182. [Google Scholar]
- Wang, J.; Kawde, A.N.; Sahlin, E. Renewable pencil electrodes for highly sensitive stripping potentiometric measurements of DNA and RNA. Analyst 1999, 125, 5–7. [Google Scholar]
- Petrek, J.; Havel, L.; Petrlova, J.; Adam, V.; Potesil, D.; Babula, P.; Kizek, R. Analysis of salicylic acid in willow barks and branches by an electrochemical method. Russ. J. Plant Physiol 2007, 54, 553–558. [Google Scholar]
- Supalkova, V.; Petrek, J.; Havel, L.; Krizkova, S.; Petrlova, J.; Adam, V.; Potesil, D.; Babula, P.; Beklova, M.; Horna, A.; Kizek, R. Electrochemical sensors for detection of acetylsalicylic acid. Sensors 2006, 6, 1483–1497. [Google Scholar]
- Nagata, T.; Nemoto, Y.; Hasezawa, S. Tobacco BY-2 cell-line as the Hela-cell in the cell biology of higher-plants. Int. Rev. Cytol 1992, 132, 1–30. [Google Scholar]
- Petrek, J.; Vitecek, J.; Vlasinova, H.; Kizek, R.; Kramer, K.J.; Adam, V.; Klejdus, B.; Havel, L. Application of computer imaging, stripping voltammetry and mass spectrometry to study the effect of lead (Pb-EDTA) on the growth and viability of early somatic embryos of Norway spruce (Picea abies/L./Karst.). Anal. Bioanal. Chem 2005, 383, 576–586. [Google Scholar]
- Vitecek, J.; Petrlova, J.; Adam, V.; Havel, L.; Kramer, K.J.; Babula, P.; Kizek, R. A fluorimetric sensor for detection of one living cell. Sensors 2007, 7, 222–238. [Google Scholar]
- Witte, C.P.; Medina-Escobar, N. In-gel detection of urease with nitroblue tetrazolium and quantification of the enzyme from different crop plants using the indophenol reaction. Anal. Biochem 2001, 290, 102–107. [Google Scholar]
- Hubalek, J.; Hradecky, J.; Adam, V.; Krystofova, O.; Huska, D.; Masarik, M.; Trnkova, L.; Horna, A.; Klosova, K.; Adamek, M.; Zehnalek, J.; Kizek, R. Spectrometric and voltammetric analysis of urease – Nickel nanoelectrode as an electrochemical sensor. Sensors 2007, 7, 1238–1255. [Google Scholar]
- Long, G.L.; Winefordner, J.D. Limit of detection. Anal. Chem 1983, 55, A712–A724. [Google Scholar]
Water sample | Length of experiment (weeks)** | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1–3* | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
Distilled water | nd | 6 | 10 | 16 | 22 | 25 | 25 | 26 | 28 | 29 | 31 |
Tap water | nd | 3 | 6 | 15 | 30 | 32 | 43 | 66 | 67 | 69 | 40 |
Coca cola | nd | 11 | 15 | 29 | 32 | 33 | 34 | 37 | 38 | 39 | 40 |
Mattoni | nd | 7 | 9 | 16 | 20 | 20 | 24 | 28 | 30 | 32 | 35 |
Rajec | nd | 5 | 10 | 18 | 22 | 27 | 40 | 42 | 44 | 44 | 46 |
Regenia | nd | 12 | 18 | 19 | 22 | 25 | 28 | 38 | 40 | 42 | 43 |
Ice tea | nd | 9 | 15 | 18 | 21 | 21 | 28 | 36 | 38 | 38 | 40 |
Aquilla | nd | 6 | 16 | 20 | 21 | 21 | 25 | 25 | 26 | 28 | 28 |
Milli-Q water | nd | 8 | 12 | 18 | 18 | 21 | 22 | 22 | 24 | 24 | 25 |
Magnesia | nd | 7 | 14 | 18 | 20 | 21 | 23 | 26 | 27 | 29 | 38 |
© 2009 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Krizkova, S.; Krystofova, O.; Trnkova, L.; Hubalek, J.; Adam, V.; Beklova, M.; Horna, A.; Havel, L.; Kizek, R. Silver(I) Ions Ultrasensitive Detection at Carbon Electrodes―Analysis of Waters, Tobacco Cells and Fish Tissues. Sensors 2009, 9, 6934-6950. https://doi.org/10.3390/s90906934
Krizkova S, Krystofova O, Trnkova L, Hubalek J, Adam V, Beklova M, Horna A, Havel L, Kizek R. Silver(I) Ions Ultrasensitive Detection at Carbon Electrodes―Analysis of Waters, Tobacco Cells and Fish Tissues. Sensors. 2009; 9(9):6934-6950. https://doi.org/10.3390/s90906934
Chicago/Turabian StyleKrizkova, Sona, Olga Krystofova, Libuse Trnkova, Jaromir Hubalek, Vojtech Adam, Miroslava Beklova, Ales Horna, Ladislav Havel, and Rene Kizek. 2009. "Silver(I) Ions Ultrasensitive Detection at Carbon Electrodes―Analysis of Waters, Tobacco Cells and Fish Tissues" Sensors 9, no. 9: 6934-6950. https://doi.org/10.3390/s90906934
APA StyleKrizkova, S., Krystofova, O., Trnkova, L., Hubalek, J., Adam, V., Beklova, M., Horna, A., Havel, L., & Kizek, R. (2009). Silver(I) Ions Ultrasensitive Detection at Carbon Electrodes―Analysis of Waters, Tobacco Cells and Fish Tissues. Sensors, 9(9), 6934-6950. https://doi.org/10.3390/s90906934