Quantitative Assessment of Desertification Using Landsat Data on a Regional Scale – A Case Study in the Ordos Plateau, China
<p>General location of study area: Ordos Plateau.</p> ">
<p>Decision Tree for desertification assessment of temperate deciduous scrubs sub-region (landscape = 3) in August, 1990. “non”, “low”, “medium”, “high” and “severe” are used to represent desertification grades for short. NDVI, MSDI and albedo are the indicators used to build the rules.</p> ">
<p>Desertification maps of Ordos in 1980 (a), 1990 (b) and 2000 (c).</p> ">
<p>Statistics of the desertification area of Ordos in 1980, 1990 and 2000. “non”, “low”, “medium”, “high” and “severe” are used to represent desertification grades for short.</p> ">
<p>The linear trend of aridity/humidity index in Ordos from 1980 to 1990 (a), from 1990 to 2000 (b); the change of rainfall (c) and temperature (d) in Ordos from 1980 to 2000.</p> ">
<p>The change of livestock number <b>(</b>a) and the area of afforestation (b) in Ordos from 1980 to 2000.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Materials and Methodology
3.1. Data Source
3.2. Indicator Selection and Acquisition
3.3. Assessment Method
4. Results and Analysis
4.1. Desertification Assessment and Accuracy Checking
4.2. The Processes and Causes of Desertification from 1980 to 2000
5. Conclusions
Acknowledgments
References and Notes
- UNSO Office to Combat Desertification and Drought. Aridity zones and dryland populations: An assessment of population levels in the world’s drylands; UNSO/UNDP: New York, 1997. [Google Scholar]
- Thomas, D.S.G. Science and desertification debate. J. Arid. Environ 1997, 37, 599–608. [Google Scholar]
- UNCCD. United Nations convention to combat desertification in countries experiencing serious drought and/or desertification, particularly in Africa; A/AC.247/27,; Pairs, 1994; p. 4. [Google Scholar]
- Veron, S.R.; Paruelo, J.M.; Oesterheld, M. Assessing desertification. J. Arid. Environ 2006, 66, 751–763. [Google Scholar]
- Sivakumar, M.V.K. Interactions between climate and desertification. Agric. For. Meteorol 2007, 142, 143–155. [Google Scholar]
- Oba, G.; Post, E.; Stenseth, N. Sub-saharan desertification and productivity are linked to hemispheric climate variability. Glob. Change. Biol 2001, 7, 241–246. [Google Scholar]
- Javier, J.; Martinez, J.; Schnabel, S. Desertification due to overgrazing in a dynamic commercial livestock-grass-soil system. Ecol. Model 2007, 205, 277–288. [Google Scholar]
- Zeidler, J.; Hanrahan, S.; Scholes, M. Land-use intensity affects range condition in arid to semi-arid Namibia. J. Arid. Environ 2002, 52, 389–403. [Google Scholar]
- Li, X.R.; Jia, X.H.; Dong, G.R. Influence of desertification on vegetation pattern variations in the cold semi-arid grasslands of Qinghai-Tibet Plateau, North-west China. J. Arid. Environ 2006, 64, 505–522. [Google Scholar]
- Wu, B.; Ci, L.J. Landscape change and desertification development in the Mu Us Sandland, Northern China. J. Arid. Environ 2002, 50, 429–444. [Google Scholar]
- Zhao, H.L.; Zhou, R.L.; Zhang, T.H.; Zhao, X.Y. Effects of desertification on soil and crop growth properties in Horqin sandy cropland of Inner Mongolia, north China. Soil. Till. Res 2006, 87, 175–185. [Google Scholar]
- Su, Y.Z.; Zhao, W.Z.; Su, P.X.; Zhang, Z.H.; Wang, T.; Ram, R. Ecological effects of desertification control and desertified land reclamation in an oasis-desert ecotone in an arid region: A case study in Hexi Corridor, northwest China. Ecol. Eng 2007, 29, 117–124. [Google Scholar]
- Li, S.G.; Harazono, Y.; Oikawa, T.; Zhao, H.L.; He, Z.Y.; Chang, X.L. Grassland desertification by grazing and the resulting micrometeorological changes in Inner Mongolia. Agr. Forest. Meteorol 2000, 102, 125–137. [Google Scholar]
- Pinet, P.C.; Kaufmann, C.; Hill, J. Imaging spectroscopy of changing Earth’s surface: a major step toward the quantitative monitoring of land degradation and desertification. C. R. Geosci 2006, 338, 1042–1048. [Google Scholar]
- Udelhoven, T.; Emmerling, C.; Jarmer, T. Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: A feasibility study. Plant Soil 2003, 251, 319–329. [Google Scholar]
- Lagacherie, P.; Baret, F.; Feret, J.B.; Netto, J.M.; Robbez-Masson, J.M. Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements. Remote Sens. Envrion 2008, 112, 825–835. [Google Scholar]
- Runnstrom, M.C. Rangeland development of the Mu Us sandy land in semiarid China: An analysis using Landsat and NOAA remote sensing data. Land Degrad. Dev 2003, 14, 189–202. [Google Scholar]
- Geerken, R.; Ilaiwi, M. Assessment of rangeland degradation and development of a strategy for rehabilitation. Remote Sens. Envrion 2004, 90, 490–504. [Google Scholar]
- Sun, D.F.; Dawson, R.; Li, H.; Li, B.G. Modeling desertification change in Minqin county, China. Environ. Monit. Assess 2005, 108, 169–188. [Google Scholar]
- Liu, A.X.; Wang, J.; Liu, Z.J.; Wang, J. Monitoring desertification in arid and semi-arid areas of China with NOAA-AVHRR and MODIS data. Geoscience and Remote Sensing Symposium, 2005. IGARSS apos; 05. Proceedings. 2005 IEEE international 2005, 4, 2362–2364. [Google Scholar]
- Sun, D.F.; Dawson, R.; Li, H.; Wei, R.; Li, B.G. A landscape connectivity index for assessing desertification: a case study of Minqin County, China. Landscape Ecol 2007, 2, 531–543. [Google Scholar]
- Tanser, F.C.; Palmer, A.R. The application of a remotely-sensed diversity index to monitor degradation patterns in a semi-arid, heterogeneous, South African landscape. J. Arid. Environ 1999, 43, 477–484. [Google Scholar]
- Jafari, R.; Lewis, M.M.; Ostendorf, B. An image-based diversity index for assessing land degradation in an arid environment in South Australia. J. Arid. Environ 2008, 72, 1282–1293. [Google Scholar]
- Julien, Y.; Sobrino, J.A.; Verhoef, W. Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999. Remote Sens. Envrion 2006, 103, 43–55. [Google Scholar]
- Lira, J. A model of desertification process in a semi-arid environment employing multi-spectral images. In Progress in Pattern Recognition, Image Analysis and Applicaton, 1st Ed; Sanfeliu, A., Martinez-Trinidad, J.F., Carrasco-Ochoa, J.A., Eds.; Springer: Berlin Heidelberg, Germany, 2004; Volume 3287, pp. 249–258. [Google Scholar]
- Huang, Q.H.; Cai, Y.L. Assessment of karst rocky desertification using radial basis function network model and GIS technique: a case study of Guizhou Province, China. Environ. Geol 2006, 49, 1173–1179. [Google Scholar]
- Qi, S.Z.; Cai, Y.M. Mapping and assessment of degraded land in the Heihe River basin, arid northwestern China. Sensors 2007, 7, 2565–2578. [Google Scholar]
- Wulder, M.A.; White, J.C.; Goward, S.N.; Masek, J.G.; Irons, J.R.; Herold, M.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Landsat continuity: Issues and opportunities for landcover monitoring. Remote Sens. Envrion 2008, 112, 955–969. [Google Scholar]
- Runnstrom, M.C. Is northern China winning the battle against desertification? Satellite remote sensing as a tool to study biomass trends on the Ordos Plateau in Semiarid China. Ambio 2000, 29, 468–476. [Google Scholar]
- Zheng, Y.R.; Xie, Z.X.; Jiang, L.H.; Shimizu, H.; Rimmington, G.M.; Zhou, G.S. Vegetation responses along environmental gradients on the Ordos plateau, China. Ecol. Res 2006, 21, 396–404. [Google Scholar]
- Bechtel, A.; Puttmann, W.; Carlson, T.N.; Ripley, D.A. On the relation between NDVI, Fractional Vegetation Cover and Leaf Area Index. Remote Sens. Envrion 1997, 62, 241–252. [Google Scholar]
- Jackson, R.D.; Idso, S.B.; Otterman, J. Surface albedo and desertification. Science 1975, 189, 1012–1015. [Google Scholar]
- Riobinove, C.J.; Chavez, P.S.; Gehring, D.; Holmgren, R. Arid land monitoring using Landsat albedo difference images. Remote Sens. Envrion 1981, 11, 133–156. [Google Scholar]
- Chavez, P.S., Jr. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens. Envrion 1988, 24, 459–479. [Google Scholar]
- Chavez, P.S., Jr. Image-based atmospheric corrections–Revisited and improved. Photogramm. Eng. Remote Sens 1996, 62, 1025–1036. [Google Scholar]
- Musick, H.B. Temporal change of Landsat MSS albedo estimates in arid rangeland. Remote Sens. Envrion 1986, 20, 107–120. [Google Scholar]
- Liang, S.L. Narrowband to broadband conversions of land surface albedo I Algorithms. Remote Sens. Envrion 2000, 76, 213–238. [Google Scholar]
- Wang, T.; Zhu, Z.D.; Wu, W. Sandy desertification in the north of China. Sci. China Ser. D 2002, 45, 23–34. [Google Scholar]
- Wang, T.; Wu, W.; Xue, X.; Sun, Q.W.; Chen, G.T. Study of spatial distribution of sandy desertification in North China in recent 10 years. Sci. China Ser. D 2004, 47, 78–88. [Google Scholar]
- Friedl, M.A.; Brodley, C. Decision tree classification of land cover from remotely sensed data. Remote Sens. Envrion 1997, 61, 399–409. [Google Scholar]
- Rogan, J.; Franklin, J.; Roberts, D.A. A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery. Remote Sens. Envrion 2002, 80, 143–156. [Google Scholar]
- Mclver, D.K.; Friedl, M.A. Using prior probabilities in decision-tree classification of remotely sensed data. Remote Sens. Envrion 2002, 81, 253–261. [Google Scholar]
- Wu, S.H.; Yin, Y.H.; Zheng, D.; Yang, Q.Y. Aridity/humidity status of land surface in China during the last three decades. Sci. China Se. r D 2005, 48, 1510–1518. [Google Scholar]
- Yin, Y.H.; Wu, S.H.; Zheng, D.; Yang, Q.Y. Regional difference of aridity/humidity conditions change over China during the last thirty years. Chin. Sci. Bull 2005, 50, 2226–2233. [Google Scholar]
- Wu, W. Study on process of desertification in Mu Us sandy land for last 50 years, China. J. Desert Res 2001, 21, 164–169. [Google Scholar]
- Wang, B.; Ding, G.D.; Gu, X.H.; Ma, S.L. Initial study on vegetation recovering effects in Maowusu Hinterland – take Wushen Banner of Inner Mongolia as an example. Res Soil Water Conserv 2007, 14, 237–242. [Google Scholar]
Month | Desertification Grade | Irrigated farmland | Temperate deciduous scrubs | Desert | ||||||
---|---|---|---|---|---|---|---|---|---|---|
NDVI | MSDI | Albedo | NDVI | MSDI | Albedo | NDVI | MSDI | Albedo | ||
August | non | <0 or >0.45 | >1 | 0–0.22 | <0 or >0.45 | >1 | 0–0.19 | <0.2 or >0.4 | >2 | 0–0.24 |
low | 0.35–0.45 | 0–4 | 0.22–0.24 | 0.3–0.45 | 0–4 | 0.19–0.21 | 0.28–0.4 | 0–8 | 0.24–0.26 | |
medium | 0.23–0.35 | 0–6 | 0.24–0.26 | 0.2–0.3 | 0–7 | 0.21–0.23 | 0.18–0.28 | 0–6 | 0.26–0.28 | |
high | 0.1–0.23 | 0–5 | 0.26–0.28 | 0.1–0.2 | 0–5 | 0.23–0.26 | 0.06–0.18 | 0–4 | 0.28–0.30 | |
severe | 0–0.1 | 0–3 | >0.28 | 0–0.1 | >1 | >0.26 | 0–0.06 | 0–3 | >0.30 | |
October | non | <0 or >0.3 | >1 | 0–0.26 | <0 or >0.35 | >1 | 0–0.24 | <0.15 or >0.3 | >1 | 0–0.26 |
low | 0.2–0.3 | 0–5 | 0.26–0.29 | 0.22–0.35 | 0–3 | 0.24–0.27 | 0.2–0.3 | 0–5 | 0.26–0.29 | |
medium | 0.145–0.20 | 0–8 | 0.29–0.33 | 0.16–0.22 | 0–5 | 0.27–0.3 | 0.14–0.2 | 0–4 | 0.29–0.31 | |
high | 0.085–0.145 | 0–6 | 0.33–0.36 | 0.08–0.16 | 0–4 | 0.3–0.33 | 0.04–0.14 | 0–3 | 0.31–0.34 | |
severe | 0–0.085 | 0–4 | >0.36 | 0–0.08 | >1 | >0.33 | 0–0.04 | 0–2 | >0.34 |
Month | Desertification Grade | Irrigated farmland | Temperate deciduous scrubs | Desert | ||||||
---|---|---|---|---|---|---|---|---|---|---|
NDVI | MSDI | Albedo | NDVI | MSDI | Albedo | NDVI | MSDI | Albedo | ||
August | non | <0 or >0.5 | >1 | 0–0.16 | <0 or >0.5 | >1 | 0–0.175 | <0.28 or >0.4 | >1 | 0–0.2 |
low | 0.4–0.5 | 0–3 | 0.16–0.18 | 0.4–0.5 | 0–3 | 0.175–0.19 | 0.32–0.4 | 0–5 | 0.16–0.18 | |
medium | 0.32–0.4 | 0–6 | 0.18–0.20 | 0.32–0.4 | 0–5 | 0.19–0.205 | 0.26–0.32 | 0–4 | 0.18–0.20 | |
high | 0.24–0.32 | 0–4 | 0.20–0.22 | 0.25–0.32 | 0–4 | 0.205–0.22 | 0.22–0.26 | 0–3 | 0.20–0.22 | |
severe | 0–0.24 | 0–3 | >0.22 | 0–0.25 | >1 | >0.22 | 0–0.22 | 0–2 | >0.22 | |
November | non | <0 or >0.27 | >1 | 0–0.35 | <0 or >0.25 | >1 | 0–0.35 | <0.18 or >0.24 | >3 | 0–0.37 |
low | 0.22–0.27 | 0–8 | 0.35–0.4 | 0.22–0.25 | 0–8 | 0.35–0.4 | 0.20–0.24 | 0–8 | 0.37–0.42 | |
medium | 0.18–0.22 | 0–6 | 0.4–0.45 | 0.19–0.22 | 0–6 | 0.4–0.45 | 0.17–0.20 | 0–6 | 0.42–0.48 | |
high | 0.15–0.18 | 0–5 | 0.45–0.5 | 0.16–0.19 | 0–4 | 0.45–0.5 | 0.15–0.17 | 0–5 | 0.48–0.52 | |
severe | 0–0.15 | 0–4 | >0.5 | 0–0.16 | >1 | >0.5 | 0–0.15 | 0–4 | >0.52 |
Year | Desertification Grade | non | low | medium | high | severe | total | Producers accuracy | Users accuracy | |
---|---|---|---|---|---|---|---|---|---|---|
1980 | non | 94 | 4 | 2 | 0 | 0 | 100 | 94.00% | 97.92% | |
low | 4 | 88 | 5 | 3 | 0 | 100 | 88.00% | 88.00% | ||
medium | 0 | 8 | 86 | 4 | 0 | 100 | 86.00% | 85.15% | ||
high | 0 | 4 | 6 | 87 | 3 | 100 | 87.00% | 88.78% | ||
severe | 0 | 0 | 0 | 0 | 100 | 100 | 100.00% | 95.24% | ||
total | 96 | 100 | 101 | 98 | 105 | 500 | ||||
Overall accuracy: 0.91; kappa statistic: 0.8875 | ||||||||||
1990 | non | low | medium | high | severe | total | ||||
non | 94 | 5 | 1 | 0 | 0 | 100 | 94.00% | 97.92% | ||
low | 2 | 90 | 8 | 0 | 0 | 100 | 90.00% | 90.00% | ||
medium | 0 | 5 | 88 | 7 | 0 | 100 | 88.00% | 87.13% | ||
high | 0 | 0 | 4 | 91 | 5 | 100 | 91.00% | 92.86% | ||
severe | 0 | 0 | 0 | 0 | 100 | 100 | 100.00% | 95.24% | ||
total | 96 | 100 | 101 | 98 | 105 | 500 | ||||
Overall accuracy: 0.926; kappa statistic: 0.9075 | ||||||||||
2000 | non | low | medium | high | severe | total | ||||
non | 92 | 3 | 4 | 1 | 0 | 100 | 92.00% | 95.83% | ||
low | 2 | 86 | 6 | 6 | 0 | 100 | 86.00% | 86.00% | ||
medium | 0 | 7 | 85 | 8 | 0 | 100 | 85.00% | 84.16% | ||
high | 0 | 3 | 7 | 87 | 3 | 100 | 87.00% | 88.78% | ||
severe | 0 | 0 | 0 | 0 | 100 | 100 | 100.00% | 95.24% | ||
total | 96 | 100 | 101 | 98 | 105 | 500 | ||||
Overall accuracy: 0.9; kappa statistic: 0.875 |
sub-region | desertification change from 1980 to 1990 | desertification change from 1990 to 2000 | ||||||
---|---|---|---|---|---|---|---|---|
reversed | expanded | reversed | expanded | |||||
Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | |
irrigated farmland | 1555.3 | 37.8% | 1100.1 | 26.8% | 1354.2 | 32.9% | 1359.7 | 33.1% |
temperate steppe | 3240.2 | 34.6% | 3091.1 | 33.0% | 3708.5 | 39.6% | 2604.9 | 27.8% |
temperate deciduous scrubs | 15601.5 | 28.0% | 14594.1 | 26.2% | 20057.5 | 36.0% | 13132.3 | 23.6% |
steppe shrub | 1887.9 | 20.6% | 2667.2 | 29.1% | 3066.5 | 33.4% | 2547.3 | 27.8% |
desert | 2037.7 | 23.7% | 1816.0 | 21.2% | 1965.8 | 22.9% | 2086.9 | 24.3% |
total | 2432.6 | 23268.5 | 30152.5 | 21731.1 |
© 2009 by the authors; licensee MDPI, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Xu, D.; Kang, X.; Qiu, D.; Zhuang, D.; Pan, J. Quantitative Assessment of Desertification Using Landsat Data on a Regional Scale – A Case Study in the Ordos Plateau, China. Sensors 2009, 9, 1738-1753. https://doi.org/10.3390/s90301738
Xu D, Kang X, Qiu D, Zhuang D, Pan J. Quantitative Assessment of Desertification Using Landsat Data on a Regional Scale – A Case Study in the Ordos Plateau, China. Sensors. 2009; 9(3):1738-1753. https://doi.org/10.3390/s90301738
Chicago/Turabian StyleXu, Duanyang, Xiangwu Kang, Dongsheng Qiu, Dafang Zhuang, and Jianjun Pan. 2009. "Quantitative Assessment of Desertification Using Landsat Data on a Regional Scale – A Case Study in the Ordos Plateau, China" Sensors 9, no. 3: 1738-1753. https://doi.org/10.3390/s90301738
APA StyleXu, D., Kang, X., Qiu, D., Zhuang, D., & Pan, J. (2009). Quantitative Assessment of Desertification Using Landsat Data on a Regional Scale – A Case Study in the Ordos Plateau, China. Sensors, 9(3), 1738-1753. https://doi.org/10.3390/s90301738