Self-Modulated Ghost Imaging in Dynamic Scattering Media
<p>Ghost imaging experimental schematic diagram.</p> "> Figure 2
<p>(<b>a</b>) Self-modulated experimental schematic diagram. (<b>b</b>) Scene of the laser beam passing through the scattering medium. (<b>c</b>) Pattern of the object.</p> "> Figure 3
<p>From (<b>1</b>) to (<b>6</b>), the strength of scattering is increasing. (<b>a1</b>–<b>a6</b>) Intensity distribution received by the detector. (<b>b1</b>–<b>b6</b>) Sequentially corresponding simulation models. The density of particles is (<b>a1</b>,<b>b1</b>) 5 × 10<sup>4</sup> cm<sup>−3</sup>, (<b>a2</b>,<b>b2</b>) 5 × 10<sup>5</sup> cm<sup>−3</sup>, (<b>a3</b>,<b>b3</b>) 5 × 10<sup>6</sup> cm<sup>−3</sup>, (<b>a4</b>,<b>b4</b>) 1 × 10<sup>7</sup> cm<sup>−3</sup>, (<b>a5</b>,<b>b5</b>) 1.5 × 10<sup>7</sup> cm<sup>−3</sup>, and (<b>a6</b>,<b>b6</b>) 2 × 10<sup>7</sup> cm<sup>−3</sup>.</p> "> Figure 4
<p>The total intensity transmittance corresponding to each concentration.</p> "> Figure 5
<p>(<b>a</b>) The principle diagram of the statistics. (<b>b</b>) Statistical results of average light intensity. (<b>c</b>) The complex amplitude of the light field is approximately Gaussian random distribution in time.</p> "> Figure 6
<p>(<b>a</b>) The principle diagram of the statistics. (<b>b</b>) Statistical results of average light intensity. (<b>c</b>) The complex amplitude of the light field is approximately Gaussian random distribution in the transverse and longitudinal space.</p> "> Figure 7
<p>(<b>a</b>,<b>b</b>) Reconstructed images of SMGI and traditional GI, respectively. The results were reconstructed with 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, and 10,000 frame samples in turn. (<b>c</b>) Canny edge detector result. The PSNR (<b>d</b>) and SSIM (<b>e</b>) line charts of SMGI and GI.</p> "> Figure 8
<p>Concentration of particles ((<b>a</b>) 0.05 mg/cm<sup>3</sup>, (<b>b</b>) 1.0 mg/cm<sup>3</sup>, (<b>c</b>) 1.5mg/cm<sup>3</sup>, (<b>d</b>) 2.0mg/cm<sup>3</sup>).</p> ">
Abstract
:1. Introduction
2. Methods
2.1. GI Principle
2.2. Self-Modulated GI
3. Results
3.1. Relationship between Random Speckle Pattern and Particle Concentration
3.2. Properties of SMGI Light Source
3.3. SMGI Performance
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chandra, S.; Sarkar, T.; Kumar, R.; Das, B.; Singh, R.K. Hanbury Brown-Twiss approach for imaging through a dynamic scattering medium. Opt. Lett. 2023, 48, 3391–3394. [Google Scholar] [CrossRef] [PubMed]
- Du, L.-K.; Sun, S.; Jiang, L.; Chang, C.; Lin, H.-Z.; Liu, W.-T. Information Segregating Towards Simultaneous Tracking and Imaging Based on Ghost Imaging. Phys. Rev. Appl. 2023, 19, 054014. [Google Scholar] [CrossRef]
- Zhou, L.; Xiao, Y.; Chen, W. High-resolution self-corrected single-pixel imaging through dynamic and complex scattering media. Opt. Express 2023, 31, 23027–23039. [Google Scholar] [CrossRef]
- Le, M.; Wang, G.; Zheng, H.; Liu, J.; Zhou, Y.; Xu, Z. Underwater computational ghost imaging. Opt. Express 2017, 25, 22859–22868. [Google Scholar] [CrossRef]
- Hsu, C.W.; Liew, S.F.; Goetschy, A.; Cao, H.; Stone, A.D. Correlation-enhanced control of wave focusing in disordered media. Nat. Phys. 2017, 13, 497–502. [Google Scholar] [CrossRef]
- Mosk, A.P.; Lagendijk, A.; Lerosey, G.; Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics 2012, 6, 283–292. [Google Scholar]
- Huang, Z.Q.; Zhou, L.; Huang, X.; Qin, H.; Zou, X.; Fu, X.; Bai, Y. BER performance of an FSOC system over atmospheric turbulence channels based on computational temporal ghost imaging. J. Opt. Soc. Am. A 2023, 40, 1478–1483. [Google Scholar] [CrossRef]
- Muller, R.A.; Buffington, A. Real-time correction of atmospherically degraded telescope images through image sharpening. J. Opt. Soc. Am. 1974, 64, 1200–1210. [Google Scholar] [CrossRef]
- Hampson, K.M.; Turcotte, R.; Miller, D.T.; Kurokawa, K.; Males, J.R.; Ji, N.; Booth, M.J. Adaptive optics for high-resolution imaging. Nat. Rev. Methods Primers 2021, 1, 68. [Google Scholar] [CrossRef]
- Cecconi, V.; Kumar, V.; Pasquazi, A.; Sebstian, J.; Gongora, T.; Peccianti, M. Nonlinear field-control of terahertz waves in random media for spatiotemporal focusing. Open Res. Eur. 2023, 2, 32. [Google Scholar] [CrossRef]
- Kumar, V.; Cecconi, V.; Peters, L.; Bertolotti, J.; Pasquazi, A.; Sebastian, J.; Gongora, T.; Peccianti, M. Deterministic Terahertz Wave Control in Scattering Media. ACS Photonics 2022, 9, 2634–2642. [Google Scholar] [CrossRef] [PubMed]
- Erkmen, B.I.; Shapiro, J.H. Ghost imaging: From quantum to classical to computational. Adv. Opt. Photon. 2010, 2, 405–450. [Google Scholar] [CrossRef]
- Hou, M.X.; Hou, C.L. Correlate imaging applications and their latest advances. Adv. Laser Optoelectron. 2023, 60, 45–54. [Google Scholar]
- Clemente, P.; Durán, V.; Torres-Company, V.; Tajahuerce, E.; Lancis, J. Optical encryption based on computational ghost imaging. Opt. Lett. 2010, 35, 2391–2393. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.J.; Xie, Z.W.; Liu, Z.J.; Liu, W.; Zhang, Y.; Liu, S. Multiple-image encryption based on computational ghost imaging. Opt. Commun. 2016, 359, 38–43. [Google Scholar] [CrossRef]
- Li, X.; Meng, X.; Yang, X.; Wang, Y.; Yin, Y.; Peng, X.; He, W.; Dong, G.; Chen, H. Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme. Opt. Lasers Eng. 2018, 102, 106–111. [Google Scholar] [CrossRef]
- Erkmen, B.I. Computational ghost imaging for remote sensing. J. Opt. Soc. Am. A 2012, 29, 782–789. [Google Scholar] [CrossRef]
- Zhao, C.; Gong, W.; Chen, M.; Li, E.; Wang, H.; Xu, W.; Han, S. Ghost imaging lidar via sparsity constraints. Appl. Phys. Lett. 2012, 101, 141123. [Google Scholar] [CrossRef]
- Chen, M.; Li, E.; Gong, W.; Bo, Z.; Xu, X.; Zhao, C.; Shen, X.; Xu, W.; Han, S. Ghost Imaging Lidar via Sparsity Constraints in Real Atmosphere. Opt. Photon. J. 2013, 3, 83–85. [Google Scholar] [CrossRef]
- Sun, B.; Edgar, M.P.; Bowman, R.; Vittert, L.E.; Welsh, S.; Bowman, A.; Padgett, M.J. 3D Computational Imaging with Single-Pixel Detectors. Science 2013, 340, 844–847. [Google Scholar] [CrossRef]
- Sun, M.-J.; Edgar, M.P.; Gibson, G.M.; Sun, B.; Radwell, N.; Lamb, R.; Padgett, M.J. Single-pixel three-dimensional imaging with time-based depth resolution. Nat. Commun. 2016, 7, 12010. [Google Scholar] [CrossRef] [PubMed]
- Horisaki, R.; Okamoto, Y.; Tanida, J. Single-shot noninvasive three-dimensional imaging through scattering media. Opt. Lett. 2019, 44, 4032–4035. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-W.; Li, W.-D.; Liu, K.; Zhou, L.-W.; Wang, Z.-M.; Gu, Y.-J. Effect of oceanic turbulence on the visibility of underwater ghost imaging. J. Opt. Soc. Am. A 2019, 36, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, W.; Wu, H.; Chen, Y.; Su, X.; Xiao, Y.; Wang, Z.; Gu, Y. High-visibility underwater ghost imaging in low illumination. Opt. Commun. 2019, 441, 45–48. [Google Scholar] [CrossRef]
- Gong, W.; Han, S. Correlated imaging in scattering media. Opt. Lett. 2011, 36, 394–396. [Google Scholar] [CrossRef]
- Gao, Z.Q.; Chen, X.M.; Chen, K.; Wang, A.Q.; Hu, Y.; Zhang, S.H.; Qun, H. Computational ghost imaging in scattering media using simulution on based deep learning. IEEE Photonics J. 2020, 12, 1–15. [Google Scholar]
- Zhuang, J.Y.; Chen, Q.; He, W.J.; Mao, T.Y. Imaging through dynamic scattering media with compressed sensing. Acta Phys. Sin. 2016, 65, 040501. [Google Scholar] [CrossRef]
- Scarcelli, G.; Berardi, V.; Shih, Y.H. Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations? Phys. Rev. Lett. 2006, 96, 063602. [Google Scholar] [CrossRef]
- Shapiro, J.H. Computational ghost imaging. Phys. Rev. A. 2008, 78, 061802. [Google Scholar] [CrossRef]
- Gao, C. Research on the Influence of the Internal and External Factors on the Quality of Ghost Imaging. Ph.D. Dissertation, Changchun University of Science and Technology, Changchun, China, 1982. [Google Scholar]
- Xu, Y.K.; Liu, W.T.; Zhang, E.F.; Li, Q.; Dai, H.Y.; Chen, P.X. Is ghost imaging intrinsically more powerful against scattering? Opt. Express 2015, 23, 32993. [Google Scholar] [CrossRef]
- Ferri, F.; Magatti, D.; Sala, V.G.; Gatti, A. Longitudinal coherence in thermal ghost imaging. Appl. Phys. Lett. 2008, 92, 261109. [Google Scholar] [CrossRef]
- Cheng, J.; Han, S. Incoherent Coincidence Imaging and Its Applicability in X-ray Diffraction. Phys. Rev. Lett. 2004, 92, 093903. [Google Scholar] [CrossRef] [PubMed]
- Alba, M.; Diaz, P.; Starshynov, I.; Fayard, N.; Goetschy, A.; Pierrat, R.; Carminati, R.; Bertolotti, J. Blind ghost imaging. Optica 2019, 6, 460–464. [Google Scholar]
- Bina, M.; Magatti, D.; Molteni, M.; Gatti, A.; Lugiato, L.A.; Ferri, F. Back scattering Differential Ghost Imaging in Turbid Media. Phys. Rev. Lett. 2013, 110, 083901. [Google Scholar] [CrossRef]
- Bisesto, F.; Galletti, M.; Curcio, A. Zemax ray tracing model for plasma waveguides. Laser Phys. Lett. 2020, 17, 036001. [Google Scholar] [CrossRef]
- Rashid, H.G.; Mishjil, K.A.; Hassim, H.T.; Algaffar, A.N.A.; Habubi, N.F. Design and Evaluation of Homogeneously Mixed Dielectric Antireflection Coatings with ZEMAX. J. Phys. Conf. Ser. 2021, 1963, 012045. [Google Scholar] [CrossRef]
- Sheng, P.X.; Mao, J.T.; Li, J.G.; Zhang, A.C.; Sang, J.G.; Pan, N.X. Atmospheric Physics; Peking University Press: Beijing, China, 2002; pp. 428–432. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics, 7th ed.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Papavassiliou, G.C. Optical properties of small inorganic and organic metal particles. Prog. Solid. State Chem. 1979, 12, 185–271. [Google Scholar] [CrossRef]
- Li, J.L. Research on Second-Order Correlation Imaging of Pseudo-Thermal Light Source. Ph.D. Dissertation, Tsinghua University, Beijing, China, 2018. [Google Scholar]
- Tom, K.A. Measurement of the second-order coherence of pseudo-thermal light. Am. J. Phys. 2017, 85, 289–294. [Google Scholar]
- Wang, Z.; Bovik, A.C. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84. [Google Scholar] [CrossRef]
- Gao, J.Y.; Xu, H.L.; Shao, K.L.; Yin, H. An adaptive edge detection method based on local edge feature descriptor. Chin. J. Lasers 2020, 47, 0604003. [Google Scholar]
- Medina, C.B.; Florez, C.L.W.; Diaz, L.C. Improved canny edge detector using principal curvatures. J. Electr. Electron. Eng. 2020, 8, 109–116. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Hou, M.; Hou, C.; Shi, Z.; Zhao, J.; Cui, G. Self-Modulated Ghost Imaging in Dynamic Scattering Media. Sensors 2023, 23, 9002. https://doi.org/10.3390/s23219002
Yu Y, Hou M, Hou C, Shi Z, Zhao J, Cui G. Self-Modulated Ghost Imaging in Dynamic Scattering Media. Sensors. 2023; 23(21):9002. https://doi.org/10.3390/s23219002
Chicago/Turabian StyleYu, Ying, Mingxuan Hou, Changlun Hou, Zhen Shi, Jufeng Zhao, and Guangmang Cui. 2023. "Self-Modulated Ghost Imaging in Dynamic Scattering Media" Sensors 23, no. 21: 9002. https://doi.org/10.3390/s23219002
APA StyleYu, Y., Hou, M., Hou, C., Shi, Z., Zhao, J., & Cui, G. (2023). Self-Modulated Ghost Imaging in Dynamic Scattering Media. Sensors, 23(21), 9002. https://doi.org/10.3390/s23219002