Tunable Optical Frequency Comb Generated Using Periodic Windows in a Laser and Its Application for Distance Measurement
<p>Schematic diagram for an LD with EOF. LD, laser diode; BS, beam splitter; VA, variable attenuator; RM, reflection mirror; PZT, piezoelectric transducer; OI, optical isolator; OSA, optical spectrum analyzer; PD, photodiode; OSC, oscilloscope; PC, computer.</p> "> Figure 2
<p>Bifurcation diagram with a periodic window embedded in chaos.</p> "> Figure 3
<p>Time series (<b>a</b>) P3 region. (<b>b</b>) P6 region.</p> "> Figure 4
<p>Optical spectrum at <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>0.041</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Demonstration of the repetition rate changing with <span class="html-italic">L</span>.</p> "> Figure 6
<p>The relationship between <math display="inline"><semantics> <mrow> <mi mathvariant="normal">Δ</mi> <mi>L</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi mathvariant="normal">Δ</mi> <msub> <mi>f</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 7
<p>Schematic setup of a dual-OFC system for distance measurement. OFC-EOF, external optical feedback-based OFC sources; OI, optical isolator; COL, collimator; FC, fiber coupler; EDFA, erbium-doped fiber application amplifier; PD, photodiodes; LF, low-pass filter; OSC, digital oscilloscopes; PC, computer for further processing.</p> "> Figure 8
<p>Measurement principle and processing diagram for distance measurement.</p> "> Figure 9
<p>(<b>a</b>) Beat spectrum of the <math display="inline"><semantics> <mrow> <mi>OF</mi> <msub> <mi mathvariant="normal">C</mi> <mrow> <mn>1</mn> <mspace width="4.pt"/> <mspace width="-0.166667em"/> <mspace width="-0.166667em"/> <mo>_</mo> <mspace width="-0.166667em"/> <mspace width="-0.166667em"/> <mspace width="4.pt"/> <mi>mea</mi> </mrow> </msub> </mrow> </semantics></math> beam, <math display="inline"><semantics> <mrow> <mi>OF</mi> <msub> <mi mathvariant="normal">C</mi> <mrow> <mn>1</mn> <mspace width="4.pt"/> <mspace width="-0.166667em"/> <mspace width="-0.166667em"/> <mo>_</mo> <mspace width="-0.166667em"/> <mspace width="-0.166667em"/> <mspace width="4.pt"/> <mi>ref</mi> </mrow> </msub> </mrow> </semantics></math> beam, and <math display="inline"><semantics> <mrow> <mi>OF</mi> <msub> <mi mathvariant="normal">C</mi> <mn>2</mn> </msub> </mrow> </semantics></math> beam after low-pass filtering. (<b>b</b>) Wrapped phase obtained by the Hilbert transform. (<b>c</b>) Unwrapped phase and the fit line. (<b>d</b>) The relationship between the varied <math display="inline"><semantics> <msub> <mi>f</mi> <mrow> <mn>1</mn> <mo>_</mo> <mi>r</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>d</mi> <msub> <mi>ϕ</mi> <mi>n</mi> </msub> <mo>/</mo> <mi>d</mi> <mi>n</mi> </mrow> </semantics></math> when <math display="inline"><semantics> <msub> <mi>D</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>e</mi> </mrow> </msub> </semantics></math> = 2,400,000.0 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m.</p> ">
Abstract
:1. Introduction
2. Periodic Window and OFC Generation
2.1. Dynamic States of an LD with EOF
2.2. OFC Generation and Its Tunability
3. A Dual-OFC System for Distance Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Symbol | Physical Meaning | Value | |
---|---|---|---|
Internal Parameters | Model gain coefficient | ms | |
Carrier density at transparency | m | ||
Nonlinear gain compression coefficient | m | ||
Confinement factor | |||
Photon lifetime | |||
Carrier lifetime | |||
Internal cavity round-trip time | |||
e | Elementary charge | C | |
V | Volume of the active region | m | |
Unperturbed optical angular frequency of a laser diode, , where c is the speed of light, and is the wavelength of the LD | |||
Line-width enhancement factor | |||
External (Controllable) Parameters | J | Injection current | |
Feedback strength | |||
L | External cavity length | 5.2 cm | |
External cavity round trip time, | 34.6 ns |
References
- Fortier, T.; Baumann, E. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2019, 2, 153. [Google Scholar] [CrossRef]
- Chang, L.; Liu, S.; Bowers, J.E. Integrated optical frequency comb technologies. Nat. Photonics 2022, 16, 95–108. [Google Scholar] [CrossRef]
- Bodine, M.I.; Deschênes, J.D.; Khader, I.H.; Swann, W.C.; Leopardi, H.; Beloy, K.; Bothwell, T.; Brewer, S.M.; Bromley, S.L.; Chen, J.S.; et al. Optical atomic clock comparison through turbulent air. Phys. Rev. Res. 2020, 2, 033395. [Google Scholar] [CrossRef]
- Wang, X.B.; Yu, Z.W.; Hu, X.L. Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 2018, 98, 062323. [Google Scholar] [CrossRef]
- Lucamarini, M.; Yuan, Z.L.; Dynes, J.F.; Shields, A.J. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 2018, 557, 400–403. [Google Scholar] [CrossRef] [PubMed]
- Ycas, G.G.; Quinlan, F.; Diddams, S.A.; Osterman, S.; Mahadevan, S.; Redman, S.; Terrien, R.; Ramsey, L.; Bender, C.F.; Botzer, B.; et al. Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb. Opt. Express 2012, 20, 6631–6643. [Google Scholar] [CrossRef]
- Brochard, P.; Schilt, S.; Südmeyer, T. Ultra-low noise microwave generation with a free-running optical frequency comb transfer oscillator. Opt. Lett. 2018, 43, 4651–4654. [Google Scholar] [CrossRef]
- Newbury, N.R. Searching for applications with a fine-tooth comb. Nat. Photonics 2011, 5, 186–188. [Google Scholar] [CrossRef]
- Ji, X.; Yao, X.; Klenner, A.; Gan, Y.; Gaeta, A.L.; Hendon, C.P.; Lipson, M. Chip-based frequency comb sources for optical coherence tomography. Opt. Express 2019, 27, 19896–19905. [Google Scholar] [CrossRef]
- Bajraszewski, T.; Wojtkowski, M.; Szkulmowski, M.; Szkulmowska, A.; Huber, R.; Kowalczyk, A. Improved spectral optical coherence tomography using optical frequency comb. Opt. Express 2008, 16, 4163–4176. [Google Scholar] [CrossRef]
- Lee, J.; Lee, K.; Lee, S.; Kim, S.W.; Kim, Y.J. High precision laser ranging by time-of-flight measurement of femtosecond pulses. Meas. Sci. Technol. 2012, 23, 065203. [Google Scholar] [CrossRef]
- Wu, G.; Takahashi, M.; Inaba, H.; Minoshima, K. Pulse-to-pulse alignment technique based on synthetic-wavelength interferometry of optical frequency combs for distance measurement. Opt. Lett. 2013, 38, 2140–2143. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Jang, Y.S.; Hyun, S.; Chun, B.J.; Kang, H.J.; Yan, S.; Kim, S.W.; Kim, Y.J. Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser. Opt. Express 2015, 23, 9121–9129. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Wu, G. Dual-comb ranging. Engineering 2018, 4, 772–778. [Google Scholar] [CrossRef]
- Cui, M.; Schouten, R.; Bhattacharya, N.; Berg, S. Experimental demonstration of distance measurement with a femtosecond frequency comb laser. J. Eur. Opt. Soc.-Rapid Publ. 2008, 3, 08003. [Google Scholar] [CrossRef]
- Hu, D.; Wu, Z.; Cao, H.; Shi, Y.; Li, R.; Tian, H.; Song, Y.; Hu, M. Dual-comb absolute distance measurement of non-cooperative targets with a single free-running mode-locked fiber laser. Opt. Commun. 2021, 482, 126566. [Google Scholar] [CrossRef]
- Lee, J.; Han, S.; Lee, K.; Bae, E.; Kim, S.; Lee, S.; Kim, S.W.; Kim, Y.J. Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength. Meas. Sci. Technol. 2013, 24, 045201. [Google Scholar] [CrossRef]
- Godbout, M.; Deschênes, J.D.; Genest, J. Spectrally resolved laser ranging with frequency combs. Opt. Express 2010, 18, 15981–15989. [Google Scholar] [CrossRef]
- Liu, T.A.; Newbury, N.R.; Coddington, I. Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers. Opt. Express 2011, 19, 18501–18509. [Google Scholar] [CrossRef]
- Wu, G.; Zhou, Q.; Shen, L.; Ni, K.; Zeng, X.; Li, Y. Experimental optimization of the repetition rate difference in dual-comb ranging system. Appl. Phys. Express 2014, 7, 106602. [Google Scholar] [CrossRef]
- Martin, B.; Feneyrou, P.; Dolfi, D.; Martin, A. Performance and limitations of dual-comb based ranging systems. Opt. Express 2022, 30, 4005–4016. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wei, H.; Wu, X.; Yang, H.; Li, Y. Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling. Opt. Express 2014, 22, 6597–6604. [Google Scholar] [CrossRef] [PubMed]
- Uchida, A. Optical Communication with Chaotic Lasers: Applications of Nonlinear Dynamics and Synchronization; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Ohtsubo, J.; Ohtsubo, J. Semiconductor Lasers and Theory; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Zhang, Y.; Liao, S.; Wang, G.; Yang, K.; Zhang, Z.; Zhang, S.; Liu, Y. Robust Optical Frequency Comb Generation by Using a Three-Stage Optical Nonlinear Dynamic. Front. Phys. 2021, 9, 711959. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, M.; Zhang, Z.; Zhang Sr, S.; Liu, Y. Self-recirculating modulation-enhanced optical frequency comb generation pumped by optical injection. In Semiconductor Lasers and Applications IX; SPIE: Bellingham, DC, USA, 2019; Volume 11182, pp. 89–94. [Google Scholar]
- Doumbia, Y.; Malica, T.; Wolfersberger, D.; Panajotov, K.; Sciamanna, M. Nonlinear dynamics of a laser diode with an injection of an optical frequency comb. Opt. Express 2020, 28, 30379–30390. [Google Scholar] [CrossRef]
- Tager, A.A.; Petermann, K. High-frequency oscillations and self-mode locking in short external-cavity laser diodes. IEEE J. Quantum Electron. 1994, 30, 1553–1561. [Google Scholar] [CrossRef]
- Yee, D.S.; Leem, Y.A.; Kim, S.T.; Park, K.H.; Kim, B.G. Self-pulsating amplified feedback laser based on a loss-coupled DFB laser. IEEE J. Quantum Electron. 2007, 43, 1095–1103. [Google Scholar] [CrossRef]
- Yu, L.; Lu, D.; Pan, B.; Zhao, L.; Wu, J.; Xia, G.; Wu, Z.; Wang, W. Monolithically integrated amplified feedback lasers for high-quality microwave and broadband chaos generation. J. Light. Technol. 2014, 32, 3595–3601. [Google Scholar] [CrossRef]
- Lang, R.; Kobayashi, K. External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 1980, 16, 347–355. [Google Scholar] [CrossRef]
- Nie, B.; Ruan, Y.; Yu, Y.; Guo, Q.; Xi, J.; Tong, J. Period-one microwave photonic sensing by a laser diode with optical feedback. J. Light. Technol. 2020, 38, 5423–5429. [Google Scholar] [CrossRef]
- Maranhao, D.M.; Baptista, M.S.; Sartorelli, J.C.; Caldas, I.L. Experimental observation of a complex periodic window. Phys. Rev. E 2008, 77, 037202. [Google Scholar] [CrossRef]
- Qin, J.; Wang, L.; Yuan, D.; Gao, P.; Zhang, B. Chaos and bifurcations in periodic windows observed in plasmas. Phys. Rev. Lett. 1989, 63, 163. [Google Scholar] [CrossRef] [PubMed]
- Riemensberger, J.; Lukashchuk, A.; Karpov, M.; Weng, W.; Lucas, E.; Liu, J.; Kippenberg, T.J. Massively parallel coherent laser ranging using a soliton microcomb. Nature 2020, 581, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Gu, C.; Sun, J.; Wang, C.; Gardiner, T.; Reid, D.T. Asynchronous midinfrared ultrafast optical parametric oscillator for dual-comb spectroscopy. Opt. Lett. 2012, 37, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Hei, K.; Anandarajah, K.; Martin, E.P.; Shi, G.; Anandarajah, P.M.; Bhattacharya, N. Absolute distance measurement with a gain-switched dual optical frequency comb. Opt. Express 2021, 29, 8108–8116. [Google Scholar] [CrossRef]
- Feldman, M. Hilbert transform in vibration analysis. Mech. Syst. Signal Process. 2011, 25, 735–802. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Fang, C.; Ruan, Y.; Yu, Y.; Guo, Q.; Tong, J.; Xi, J. Tunable Optical Frequency Comb Generated Using Periodic Windows in a Laser and Its Application for Distance Measurement. Sensors 2023, 23, 8872. https://doi.org/10.3390/s23218872
Chen Z, Fang C, Ruan Y, Yu Y, Guo Q, Tong J, Xi J. Tunable Optical Frequency Comb Generated Using Periodic Windows in a Laser and Its Application for Distance Measurement. Sensors. 2023; 23(21):8872. https://doi.org/10.3390/s23218872
Chicago/Turabian StyleChen, Zhuqiu, Can Fang, Yuxi Ruan, Yanguang Yu, Qinghua Guo, Jun Tong, and Jiangtao Xi. 2023. "Tunable Optical Frequency Comb Generated Using Periodic Windows in a Laser and Its Application for Distance Measurement" Sensors 23, no. 21: 8872. https://doi.org/10.3390/s23218872
APA StyleChen, Z., Fang, C., Ruan, Y., Yu, Y., Guo, Q., Tong, J., & Xi, J. (2023). Tunable Optical Frequency Comb Generated Using Periodic Windows in a Laser and Its Application for Distance Measurement. Sensors, 23(21), 8872. https://doi.org/10.3390/s23218872