Optical Multimode Fiber-Based Pipe Leakage Sensor Using Speckle Pattern Analysis
<p>The hydraulic and optical system setup diagram. A1—water source, A2—centrifugal pump, A3—piping loop, A4—pressure gage, A5—volumetric flow meter, B—leak sensor, B1—leak opening, C1—laser, C2—holder for the fiber’s inlet, C3—fiber splitter (50/50), C4—connection to the sensor fibers, C5—stand for the fiber’s outlet, C6—digital camera, and D—computer.</p> "> Figure 2
<p>Schematic of the sensor with covered and exposed MMF.</p> "> Figure 3
<p>Focused vs. defocused specklegram’s signal amplitude.</p> "> Figure 4
<p>ML process diagram.</p> "> Figure 5
<p>Full speckle pattern image from two simultaneously recorded MMFs—400 µm placed inside (<b>left</b>) and 200 µm placed outside (<b>right</b>).</p> "> Figure 6
<p>The outer and inner fibers’ signals in a pipe burst simulation (200 and 400 µm).</p> "> Figure 7
<p>A spectrogram of a pipe burst test—400 µm covered fiber.</p> "> Figure 8
<p>Average signal amplitude vs. leak flow for three leak diameters—400 µm exposed fiber.</p> "> Figure 9
<p>Signal amplitude variation over time for the 8 mm and 3 mm leak diameter scenarios.</p> "> Figure 10
<p>ML accuracy for leak detection—400 µm covered fiber. Positive accuracy shown in (<b>a</b>) and false positive rate shown in (<b>b</b>).</p> "> Figure 11
<p>ML accuracy for leak size detection—400 µm covered and exposed fibers.</p> ">
Abstract
:1. Introduction
- Listening sticks are placed above the pipes, allowing an operator to hear leak-related sounds.
- Thermal imaging indicates a leak according to a difference in temperature around the pipe.
- Tethers or robotic crawlers can be used with a sensor at their end.
- Satellite-based ground-penetrating radar can detect the chemical makeup of a large portion of the soil around a pipeline.
2. Theoretical Background
2.1. Speckle Pattern Analysis and Its Applications
2.2. Water Pipes and Flow Characteristics
2.3. Pipe Leak Hydraulics
2.4. Methods of ML Analysis
3. Materials and Methods
3.1. Hydraulic Setup and Optical System
3.2. The Sensor
3.3. Speckle Pattern Recording and Processing Software
4. Results
4.1. Defocused Speckle Pattern
4.2. Pipe Burst Simulation
4.3. Analysis Using a Frequency Spectrogram
4.4. Statistical Analysis
4.5. Leak Detection with ML
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Zahab, S.; Zayed, T. Leak detection in water distribution networks: An introductory overview. Smart Water 2019, 4, 1–23. [Google Scholar] [CrossRef]
- Karadirek, I.E. Urban water losses management in Turkey: The legislation and challenges. Anadolu Univ. J. Sci. Technol. A Appl. Sci. Eng. 2016, 17, 572–584. [Google Scholar] [CrossRef]
- Ebrahimi, E.; Shafai Bejestan, M.; Aminnejad, B. Illegal connection detection in a viscoelastic pipeline using inverse transient analysis in the time domain. Water Supply 2022, 22, 4594–4605. [Google Scholar] [CrossRef]
- Kafle, M.D.; Narasimhan, S. Active acoustic leak detection in a pressurized PVC pipe. Urban Water J. 2020, 17, 315–324. [Google Scholar] [CrossRef]
- Adegboye, M.A.; Fung, W.K.; Karnik, A. Recent advances in pipeline monitoring and oil leakage detection technologies: Principles and approaches. Sensors 2019, 19, 2548. [Google Scholar] [CrossRef]
- Asterra. Available online: https://asterra.io/resources/passive-sensors-vs-active-sensors/ (accessed on 28 September 2023).
- Megan, A.K. Overview of Available Leak Detection Technologies; United States Department of Energy: Washington, DC, USA, 2019. [Google Scholar]
- Hunaidi, O. Leak Detection Methods for Plastic Water Distribution Pipes; AWWA Research Foundation and Water Works Association: Washington, DC, USA, 1999. [Google Scholar]
- Wong, L.; Deo, R.; Rathnayaka, S.; Shannon, B.; Zhang, C.; Chiu, W.K.; Kodikara, J.; Widyastuti, H. Leak Detection in Water Pipes Using Submersible Optical Optic-Based Pressure Sensor. Sensors 2018, 18, 4192. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Frizera, A.; Marques, C.; Pontes, M.J. Optical fiber specklegram sensors for mechanical measurements: A review. IEEE Sens. J. 2019, 20, 569–576. [Google Scholar] [CrossRef]
- Ong, K.S.; Png, W.H.; Lin, H.S.; Pua, C.H.; Rahman, F.A. Acoustic vibration sensor based on macro-bend coated fiber for pipeline leakage detection. In Proceedings of the 17th International Conference on Control, Automation and Systems (ICCAS), Jeju, Republic of Korea, 18–21 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 167–171. [Google Scholar]
- Li, W.; Liu, T.; Xiang, H. Leakage detection of water pipelines based on active thermometry and FBG based quasi-distributed fiber optic temperature sensing. J. Intell. Mater. Syst. Struct. 2021, 32, 1744–1755. [Google Scholar] [CrossRef]
- Saade, M.; Mustapha, S. Assessment of the structural conditions in steel pipeline under various operational conditions—A machine learning approach. Measurement 2020, 166, 108262. [Google Scholar] [CrossRef]
- Bai, Y.; Xing, J.; Xie, F.; Liu, S.; Li, J. Detection and identification of external intrusion signals from 33 km optical fiber sensing system based on deep learning. Opt. Fiber Technol. 2019, 53, 102060. [Google Scholar] [CrossRef]
- Cuevas, A.R.; Fontana, M.; Rodriguez-Cobo, L.; Lomer, M.; López-Higuera, J.M. Machine learning for turning optical fiber specklegram sensor into a spatially-resolved sensing system. Proof of concept. J. Light. Technol. 2018, 36, 3733–3738. [Google Scholar] [CrossRef]
- Aktas, M.; Akgun, T.; Demircin, M.U.; Buyukaydin, D. Deep learning based multi-threat classification for phase-OTDR fiber optic distributed acoustic sensing applications. In Fiber Optic Sensors and Applications XIV; SPIE: Paris, France, 2017; Volume 10208, pp. 75–92. [Google Scholar]
- The Fiber Optic Association. Available online: www.thefoa.org/tech/ref/basic/fiber.html (accessed on 4 January 2022).
- Langmuir, R.V. Scattering of laser light. Appl. Phys. Lett. 1963, 2, 29–30. [Google Scholar] [CrossRef]
- Goodman, J.W. Some fundamental properties of speckle. JOSA 1976, 66, 1145–1150. [Google Scholar] [CrossRef]
- Dove, J.; Shapiro, J.H. Speckled speckled speckle. Opt. Express 2020, 28, 22105–22120. [Google Scholar] [CrossRef]
- Fujiwara, E.; da Silva, L.E.; Cabral, T.D.; de Freitas, H.E.; Wu, Y.T.; de Barros Cordeiro, C.M. Optical fiber specklegram chemical sensor based on a concatenated multimode fiber structure. J. Light. Technol. 2019, 37, 5041–5047. [Google Scholar] [CrossRef]
- Pal, D.; Agadarov, S.; Beiderman, Y.; Beiderman, Y.; Kumar, A.; Zalevsky, Z. Non-invasive blood glucose sensing by machine learning of optic fiber-based speckle pattern variation. J. Biomed. Opt. 2022, 27, 097001. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.; Beiderman, Y.; Agdarov, S.; Beiderman, Y.; Hendel, R.; Straussman, B.; Zalevsky, Z. Monitoring of vital bio-signs by analysis of speckle patterns in a fabric-integrated multimode optical fiber sensor. Opt. Express 2020, 28, 20830–20844. [Google Scholar] [CrossRef]
- Lomer, M.; Rodriguez-Cobo, L.; Madruga, F.; Lopez-Higuera, J.M. Interference of speckle patterns projected by multimode fibers. In Proceedings of the SPECKLE 2015: VI International Conference on Speckle Metrology, Guanajuato, Mexico, 24–26 August 2015; Volume 9660, pp. 337–342. [Google Scholar]
- Ferraro, P.; Wax, A.; Zalevsky, Z. (Eds.) Coherent Light Microscopy: Imaging and Quantitative Phase Analysis; Springer Science & Business Media: Berlin, Germany, 2011; Volume 46. [Google Scholar]
- Bashta, T. Hydraulics and Hydraulic Drives; Mashinostroenie: Moscow, Russia, 1970. [Google Scholar]
- Rott, N. Note on the history of the Reynolds number. Annu. Rev. Fluid Mech. 1990, 22, 1–12. [Google Scholar] [CrossRef]
- Smits, A.J.; McKeon, B.J.; Marusic, I. High–Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 2011, 43, 353–375. [Google Scholar] [CrossRef]
- Ghidaoui, M.S.; Zhao, M.; McInnis, D.A.; Axworthy, D.H. A review of water hammer theory and practice. Appl. Mech. Rev. 2005, 58, 49–76. [Google Scholar] [CrossRef]
- van Zyl, J.E. Theoretical modeling of pressure and leakage in water distribution systems. Procedia Eng. 2014, 89, 273–277. [Google Scholar] [CrossRef]
- Zhou, Z.H. Machine Learning; Springer Nature: Berlin, Germany, 2021. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46, 175–185. [Google Scholar]
- Thor Labs. Available online: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6845 (accessed on 29 June 2023).
Fiber Properties | 200 µm | 400 µm | 600 µm |
---|---|---|---|
Transmission region | 400–2200 nm | ||
Core/Cladding material | Pure silica/Hard polymer | ||
Core/Cladding refraction index | 1.458/1.365 | ||
Core diameter | 200 ± 5 | 400 ± 8 | 600 ± 10 |
Cladding diameter | 225 ± 5 | 425 ± 8 | 630 ± 10 |
Coating diameter | 500 ± 30 | 730 ± 30 | 1040 ± 30 |
Test Number | No Leak–Maximum Amplitude [Pixel] | Simulated Burst–Maximum Amplitude [Pixel] | Relation | |
---|---|---|---|---|
1 | Covered fiber | 0.122 | 0.567 | 4.67 |
Exposed fiber | 0.121 | 0.465 | 3.84 | |
2 | Covered fiber | 0.116 | 0.321 | 2.77 |
Exposed fiber | 0.098 | 0.314 | 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Philosof, J.; Beiderman, Y.; Agdarov, S.; Beiderman, Y.; Zalevsky, Z. Optical Multimode Fiber-Based Pipe Leakage Sensor Using Speckle Pattern Analysis. Sensors 2023, 23, 8634. https://doi.org/10.3390/s23208634
Philosof J, Beiderman Y, Agdarov S, Beiderman Y, Zalevsky Z. Optical Multimode Fiber-Based Pipe Leakage Sensor Using Speckle Pattern Analysis. Sensors. 2023; 23(20):8634. https://doi.org/10.3390/s23208634
Chicago/Turabian StylePhilosof, Jonathan, Yevgeny Beiderman, Sergey Agdarov, Yafim Beiderman, and Zeev Zalevsky. 2023. "Optical Multimode Fiber-Based Pipe Leakage Sensor Using Speckle Pattern Analysis" Sensors 23, no. 20: 8634. https://doi.org/10.3390/s23208634
APA StylePhilosof, J., Beiderman, Y., Agdarov, S., Beiderman, Y., & Zalevsky, Z. (2023). Optical Multimode Fiber-Based Pipe Leakage Sensor Using Speckle Pattern Analysis. Sensors, 23(20), 8634. https://doi.org/10.3390/s23208634