Explainable Remaining Tool Life Prediction for Individualized Production Using Automated Machine Learning
<p>Possible dataset variants in the area of remaining tool life prediction depending on the degree of process condition variations during single and multiple tool life cycles.</p> "> Figure 2
<p>Sensor system architecture showing the signal processing and feature extraction steps based on three spindle-mounted accelerometers covering the spatial axis. The accelerometers acquire the mass-dependent vibration of the spindle due to the cutting forces ➀ and the process-related structure-borne sound ➁.</p> "> Figure 3
<p>Remaining tool life prediction methodology based on an extended feature set. The feature set contains not only instantaneous features with information on the current tool state but also cumulative and parameter features with context information on current and past processes. Additionally, the model allows for estimates of future features as inputs to include a priori knowledge.</p> "> Figure 4
<p>Methodology for the dataset generation based on a parameterizable pocket milling process. The dataset represents tool wear until exceeding an end-of-life threshold <math display="inline"><semantics> <msub> <mi mathvariant="italic">VB</mi> <mi>t</mi> </msub> </semantics></math> in individualized production scenarios under continuous variation in workpieces and cutting parameters.</p> "> Figure 5
<p>Framework implementing the automated and explainable remaining tool life prediction. The feature tensors <math display="inline"><semantics> <msubsup> <mi mathvariant="bold">X</mi> <mrow> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>−</mo> <mi>L</mi> <mo>:</mo> <msub> <mi>T</mi> <mi>c</mi> </msub> </mrow> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mi mathvariant="bold">X</mi> <mrow> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>−</mo> <mi>L</mi> <mo>:</mo> <msubsup> <mi>T</mi> <mi>c</mi> <msub> <mi mathvariant="italic">VB</mi> <mi>t</mi> </msub> </msubsup> </mrow> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </msubsup> </semantics></math>, including the instantaneous features (IFs), cumulative features (CFs) and parameter features (PFs), are the model inputs. The tool wear vectors <math display="inline"><semantics> <msub> <mover accent="true"> <mi mathvariant="bold">y</mi> <mo stretchy="false">^</mo> </mover> <mrow> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>−</mo> <mi>L</mi> <mo>:</mo> <msub> <mi>T</mi> <mi>c</mi> </msub> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mover accent="true"> <mi mathvariant="bold">y</mi> <mo stretchy="false">^</mo> </mover> <mrow> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>+</mo> <mn>1</mn> <mo>:</mo> <msubsup> <mi>T</mi> <mi>c</mi> <msub> <mi mathvariant="italic">VB</mi> <mi>t</mi> </msub> </msubsup> </mrow> </msub> </semantics></math> are the model outputs.</p> "> Figure 6
<p>Tool wear mark width measurements and average material removal rates for the nine tools of the dataset. A cross marks the average maximum wear mark width over all cutting inserts <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>∈</mo> <mo>{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>}</mo> </mrow> </semantics></math>. The vertical bars denote the maximum and minimum individual wear mark width values <math display="inline"><semantics> <msub> <mi mathvariant="italic">VB</mi> <mi>i</mi> </msub> </semantics></math> among the inserts.</p> "> Figure 7
<p>Leave-one-tool-out cross-validation and testing (LOTO-CVT) strategy for the remaining tool life prediction methodology based on a dataset with a limited number of tools <span class="html-italic">N</span>.</p> "> Figure 8
<p>Comparison of tool wear regression results using only the instantaneous features in combination with a state-of-the-art hand-crafted model architecture and the AutoML-based tool wear regression using the extended feature set proposed in this paper. The tool’s data whose prediction results are displayed have been excluded from the training set.</p> "> Figure 9
<p>Comparison of the remaining tool life prediction results using the LSTM without future feature inputs and the LSTM with the cutting time <math display="inline"><semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics></math> as future feature inputs. The tool’s data whose prediction results are displayed have been excluded from the training set.</p> "> Figure 10
<p>Feature importance analysis of the spectral instantaneous, cumulative and parameter features derived from the AutoML-based feature importance ranking algorithm introduced in this paper. The mean feature importance scores and their standard deviation over all tools are shown.</p> "> Figure 11
<p>Comparison of the tool wear regression results using the two training sets and the data of reference tool 1 as the test set. The data of reference tool 1 have been excluded from the training set.</p> "> Figure 12
<p>Comparison of the remaining tool life prediction results using the two training sets combined with the LSTM without future feature inputs and the LSTM with the cutting time <math display="inline"><semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics></math> as future feature inputs. The data of reference tool 1 have been excluded from the training set.</p> "> Figure A1
<p>Measurement procedure of the individual wear mark width <math display="inline"><semantics> <msub> <mi mathvariant="italic">VB</mi> <mi>i</mi> </msub> </semantics></math> per cutting insert <span class="html-italic">i</span>.</p> "> Figure A2
<p>Comparison of the tool wear regression results using the individual high-importance features <math display="inline"><semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics></math> and <span class="html-italic">V</span> based on the training set composed of tools 1 to 7 and reference tool 2. The data of reference tool 1 are the test set and are thus excluded from the training set.</p> ">
Abstract
:1. Introduction
- A remaining tool life prediction methodology adaptable to new process conditions without manual intervention through automated machine learning (AutoML) while jointly explaining the predictions for model validation and optimization;
- A new dataset and the methodology for its generation, representing gradual tool wear and its influence on the workpiece surface in individualized production under continuous variation in workpieces and cutting parameters;
- A detailed evaluation of the methodology based on the new dataset, comparing it with a state-of-the-art approach for series production and investigating its explanation and generalization capabilities as well as its potential to increase the prediction robustness.
2. Related Work
3. Methodology
3.1. Sensors Signals and Feature Extraction
3.2. Prediction Model
3.3. Explainablity Methodology
Algorithm 1 AutoML-based combined remaining tool life prediction model generation and feature importance ranking |
Input: Pipelines hyperparemeterized by including feature selection based on importance score vectors , Empirical generalization error function , Training dataset , Training time budget T, Number N of pipelines to include in a final ensemble Output: Best-performing ensemble of pipelines, Global feature importance vector
|
4. Implementation
4.1. Sensor System
4.2. Experimental Setup
4.3. Model Implementation
5. Results and Discussion
5.1. Dataset and Evaluation Approach
5.2. Prediction Model Evaluation
5.3. Feature Importance Analysis
5.4. Generalization Performance
- Tools 1–7 and reference tool 2: Knowledge of the target wear curve for variable pocket manufacturing using variable cutting parameters and of the wear curve for face milling using fixed, maximum cutting parameters.
- Tools 1–7: Knowledge of the target wear curve for variable pocket manufacturing using variable cutting parameters only.
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Wear Mark Width Measurement
Appendix B. Milling Process Details
Category | Parameter | Unit | Range/Value |
---|---|---|---|
Cutting Process | Feed per Tooth () | mm | |
Cutting Speed () | |||
Axial Cut Depth () | mm | ||
Radial Cut Depth () | mm | R | |
Pocket Geometry | Corners () | - | |
Radius () | mm | ||
Depth () | mm | ||
Position | mm | , | |
Rotation Angle () | |||
Milling Tool | Type | - | Indexable |
Tool Shape | - | Toroidal | |
Edge Shape | - | Circular | |
Number of Teeth () | - | 3 | |
Cutter Radius (R) | mm | 10 | |
Edge Radius (r) | mm | 4 | |
End-of-life Threshold () | mm | 0.8 | |
Workpiece | Dimensions | mm | 200, 200, 200 |
Material | - | X155CrVMo12-1 (DIN 1.2379) | |
Consecutive Pockets () | - | 4 |
Appendix C. AutoML Framework Analysis
AutoML Framework | Search Space Size (Number of Included Methods) | |
---|---|---|
Feature Selection | Model Types | |
LightAutoML | 2 | 2 |
FLAML | 3 | 6 |
Auto-sklearn | 13 | 12 |
Method | Metric | Prediction Errors per Test Tool (mm) | |||||||
---|---|---|---|---|---|---|---|---|---|
Tool 1 | Tool 2 | Tool 3 | Tool 4 | Tool 5 | Tool 6 | Tool 7 | Mean | ||
Light AutoML | RMSE | 0.033 | 0.050 | 0.079 | 0.022 | 0.051 | 0.064 | 0.036 | 0.048 |
MAE | 0.027 | 0.035 | 0.054 | 0.016 | 0.042 | 0.043 | 0.026 | 0.035 | |
FLAML | RMSE | 0.035 | 0.044 | 0.086 | 0.023 | 0.062 | 0.065 | 0.034 | 0.050 |
MAE | 0.028 | 0.032 | 0.057 | 0.017 | 0.047 | 0.041 | 0.022 | 0.035 | |
Auto-sklearn | RMSE | 0.038 | 0.068 | 0.107 | 0.026 | 0.066 | 0.065 | 0.041 | 0.059 |
MAE | 0.031 | 0.046 | 0.070 | 0.021 | 0.055 | 0.045 | 0.028 | 0.042 |
Method | Search Time (s) | |||||||
---|---|---|---|---|---|---|---|---|
Tool 1 | Tool 2 | Tool 3 | Tool 4 | Tool 5 | Tool 6 | Tool 7 | Mean | |
Light AutoML | 185.0 | 185.1 | 186.6 | 186.2 | 185.7 | 186.3 | 186.5 | 185.9 |
FLAML | 165.2 | 308.2 | 280.8 | 214.6 | 238.6 | 214.8 | 177.8 | 228.6 |
Auto-sklearn | 600.0 | 600.00 | 600.0 | 600.0 | 600.0 | 600.0 | 600.0 | 600.0 |
Appendix D. Feature Subset Comparison
Feature Subset | Metric | Prediction Errors per Test Tool (mm) | |||||||
---|---|---|---|---|---|---|---|---|---|
Tool 1 | Tool 2 | Tool 3 | Tool 4 | Tool 5 | Tool 6 | Tool 7 | Mean | ||
Instantaneous | RMSE | 0.169 | 0.140 | 0.189 | 0.131 | 0.199 | 0.182 | 0.162 | 0.167 |
MAE | 0.133 | 0.102 | 0.155 | 0.097 | 0.147 | 0.143 | 0.132 | 0.130 | |
Cumulative | RMSE | 0.036 | 0.072 | 0.061 | 0.032 | 0.054 | 0.066 | 0.025 | 0.049 |
MAE | 0.030 | 0.047 | 0.041 | 0.025 | 0.042 | 0.044 | 0.017 | 0.035 | |
Parameters | RMSE | 0.244 | 0.153 | 0.171 | 0.202 | 0.235 | 0.277 | 0.190 | 0.210 |
MAE | 0.196 | 0.125 | 0.153 | 0.165 | 0.195 | 0.216 | 0.152 | 0.172 |
Feature | Metric | Prediction Errors per Test Tool (mm) | |||||||
---|---|---|---|---|---|---|---|---|---|
Tool 1 | Tool 2 | Tool 3 | Tool 4 | Tool 5 | Tool 6 | Tool 7 | Mean | ||
RMSE | 0.035 | 0.046 | 0.059 | 0.035 | 0.054 | 0.058 | 0.026 | 0.045 | |
MAE | 0.029 | 0.034 | 0.041 | 0.027 | 0.042 | 0.037 | 0.018 | 0.033 | |
V | RMSE | 0.042 | 0.037 | 0.117 | 0.031 | 0.080 | 0.077 | 0.057 | 0.063 |
MAE | 0.026 | 0.029 | 0.075 | 0.024 | 0.065 | 0.043 | 0.050 | 0.045 | |
Q | RMSE | 0.207 | 0.171 | 0.202 | 0.164 | 0.208 | 0.195 | 0.211 | 0.194 |
MAE | 0.185 | 0.129 | 0.137 | 0.134 | 0.181 | 0.152 | 0.180 | 0.157 |
References
- Boos, W.; Kelzenberg, C.; Prümmer, M.; Goertz, D.; Boshof, J.; Horstkotte, R.; Ochel, T.; Lürken, C. Tooling in Germany 2020; WZL of RWTH Aachen, Fraunhofer IPT: Aachen, Germany, 2020. [Google Scholar]
- Boos, W.; Arntz, K.; Johannsen, L.; Prümmer, M.; Horstkotte, R.; Ganser, P.; Venek, T.; Gerretz, V. Erfolgreich Fräsen im Werkzeugbau; Fraunhofer IPT, WBA Aachener Werkzeubau Akademie: Aachen, Germany, 2018. [Google Scholar]
- Norberto López de Lacalle, L.; Lamikiz, A. Sculptured Surface Machining. In Machining—Fundamentals and Recent Advances; Davim, J.P., Ed.; Springer: London, UK, 2008; pp. 225–249. [Google Scholar]
- Möhring, H.-C.; Nguyen, Q.P.; Kuhlmann, A.; Lerez, C.; Nguyen, L.T.; Misch, S. Intelligent Tools for Predictive Process Control. Procedia CIRP 2016, 57, 539–544. [Google Scholar] [CrossRef]
- Möhring, H.-C.; Eschelbacher, S.; Georgi, P. Fundamental investigation on the correlation between surface properties and acceleration data from a sensor integrated milling tool. Procedia Manuf. 2020, 52, 79–84. [Google Scholar] [CrossRef]
- Denkena, B.; Dittrich, M.-A.; Lindauer, M.; Mainka, J.; Stürenburg, L. Using AutoML to Optimize Shape Error Prediction in Milling Processes. In Proceedings of the 2020 Machining Innovations Conference (2020), Online, 1–2 December 2020. [Google Scholar]
- Mohamed, A.; Hassan, M.; M’Saoubi, R.; Attia, H. Tool Condition Monitoring for High-Performance Machining Systems-A Review. Sensors 2022, 22, 2206. [Google Scholar] [CrossRef] [PubMed]
- Sayyad, S.; Kumar, S.; Bongale, A.; Kamat, P.; Patil, S.; Kotecha, K. Data-Driven Remaining Useful Life Estimation for Milling Process: Sensors, Algorithms, Datasets, and Future Directions. Int. J. Adv. Manuf. Technol. 2021, 115, 2683–2709. [Google Scholar] [CrossRef]
- Denkena, B.; Krüger, M.; Schmidt, J. Condition-based tool management for small batch production. Int. J. Adv. Manuf. Technol. 2014, 74, 471–480. [Google Scholar] [CrossRef]
- Arntz, C.; Brandstätter, T.C.; Dorißen, J.; Frye, M.; Krauß, J.; Krebs, L.; Holst, C.; Horstkotte, R.; Mende, H.; Schiller, S.; et al. Künstliche Intelligenz in der Einzel- und Kleinserienfertigung; Fraunhofer IPT: Aachen, Germany, 2021. [Google Scholar]
- Wang, W.; Wang, B.; Li, N.; Lei, Y.; Yan, T. Remaining Useful Life Prediction Based on Multi-channel Attention Bidirectional Long Short-term Memory Network. In Proceedings of the 2021 IEEE International Conference on Sensing, Diagnostics, Prognostics, and Control (2021), Weihai, China, 13–15 August 2021; pp. 7–12. [Google Scholar]
- Sun, H.; Zhang, J.; Mo, R.; Zhang, X. In-process tool condition forecasting based on a deep learning method. Robot.-Comput.-Integr. Manuf. 2020, 64, 101924. [Google Scholar] [CrossRef]
- Astakhov, V.P.; Davim, J.P. Tools (Geometry and Material) and Tool Wear. In Machining—Fundamentals and Recent Advances; Davim, J.P., Ed.; Springer: London, UK, 2008; pp. 29–59. [Google Scholar]
- Mebrahitom, A.G.; Seow, X.Y.; Azmir, A.; Tamiru, A.L. Remaining Tool Life Prediction Based on Force Sensors Signal During End Milling of Stavax ESR Steel. In Proceedings of the International Mechanical Engineering Congress and Exposition (2017), Tampa, FL, USA, 3–9 November 2017; pp. 1–7. [Google Scholar]
- Zhang, J.; Zeng, Y.; Starly, B. Recurrent Neural Networks with Long Term Temporal Dependencies in Machine Tool Wear Diagnosis and Prognosis. SN Appl. Sci. 2021, 3, 442. [Google Scholar] [CrossRef]
- Drouillet, C.; Karandikar, J.; Nath, C.; Journeaux, A.-C.; El Mansori, M.; Kurfess, T. Tool Life Predictions in Milling using Spindle Power with the Neural Network Technique. J. Manuf. Process. 2016, 22, 161–168. [Google Scholar] [CrossRef]
- An, Q.; Tao, Z.; Xu, X.; El Mansori, M.; Chen, M. A Data-driven Model for Milling Tool Remaining Useful Life Prediction with Convolutional and Stacked LSTM Network. Measurement 2020, 154, 107461. [Google Scholar] [CrossRef]
- Nasir, V.; Sassani, F. A Review on Deep Learning in Machining and Tool Monitoring: Methods, Opportunities, and Challenges. IEEE Access 2021, 9, 110255–110286. [Google Scholar] [CrossRef]
- Li, Y.; Xiang, Y.; Pan, B.; Shi, L. A Hybrid Remaining Useful Life Prediction Method for Cutting Tool considering the Wear State. Int. J. Adv. Manuf. Technol. 2022, 121, 3583–3596. [Google Scholar] [CrossRef]
- Guo, L.; Yu, Y.; Gao, H.; Feng, T.; Liu, Y. Online Remaining Useful Life Prediction of Milling Cutters Based on Multisource Data and Feature Learning. IEEE Trans. Ind. Inform. 2022, 18, 5199–5208. [Google Scholar] [CrossRef]
- Jia, W.; Wang, W.; Li, Z.; Li, H. Prediction of Tool Wear in Sculpture Surface by a new Fusion Method of Temporal Convolutional Network and Self-Attention. Int. J. Adv. Manuf. Technol. 2022, 121, 2565–2583. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, X.; Jin, J. Remaining Useful Life Prediction of Cutting Tools based on Deep Adversarial Transfer Learning. In Proceedings of the 2019 8th International Conference on Computing and Pattern Recognition (2019), Beijing China, 23–25 October 2019; pp. 434–439. [Google Scholar]
- Li, X.; Lim, B.S.; Zhou, J.H.; Huang, S.; Phua, S.J.; Shaw, K.C.; Er, M.J. Fuzzy Neural Network Modelling for Tool Wear Estimation in Dry Milling Operation. In Proceedings of the Annual Conference of the PHM Society (2009), San Diego, CA, USA, 27 September–1 October 2009. [Google Scholar]
- Goebel, K. Management of Uncertainty for Sensor Validation, Sensor Fusion and Diagnosis in Sensor Driven Mechanical Systems Using Soft Computing Techniques; UC Berkeley: Berkeley, CA, USA, 1996. [Google Scholar]
- Zhou, J.-T.; Zhao, X.; Gao, J. Tool Remaining Useful Life Prediction Method based on LSTM under Variable Working Conditions. Int. J. Adv. Manuf. Technol. 2019, 104, 4715–4726. [Google Scholar] [CrossRef]
- Matsumura, R.; Nishida, I.; Shirase, K. Tool Life Prediction in End Milling using a Combination of Machining Simulation and Tool Wear Progress Data. J. Adv. Mech. Des. Syst. Manuf. 2023, 17, JAMDSM0025. [Google Scholar] [CrossRef]
- Zegarra, F.C.; Vargas-Machuca, J.; Coronado, A.M. Tool Wear and Remaining Useful Life (RUL) Prediction based on Reduced Feature Set and Bayesian Hyperparameter Optimization. Prod. Eng. 2022, 16, 465–480. [Google Scholar] [CrossRef]
- Lutz, B.; Reisch, R.; Kißkalt, D.; Avci, B.; Regulin, D.; Knoll, A.; Franke, J. Benchmark of Automated Machine Learning with State-of-the-Art Image Segmentation Algorithms for Tool Condition Monitoring. Procedia Manuf. 2020, 51, 215–221. [Google Scholar] [CrossRef]
- Kißkalt, D.; Mayr, A.; Lutz, B.; Rögele, A.; Franke, J. Streamlining the development of data-driven industrial applications by automated machine learning. Procedia CIRP 2020, 93, 401–406. [Google Scholar] [CrossRef]
- Schmetz, A.; Vahl, C.; Zhen, Z.; Reibert, D.; Mayer, S.; Zontar, D.; Garcke, J.; Brecher, C. Decision Support by Interpretable Machine Learning in Acoustic Emission Based Cutting Tool Wear Prediction. In Proceedings of the 2021 IEEE International Conference on Industrial Engineering and Engineering Management (2021), Singapore, 13–16 December 2021; pp. 629–633. [Google Scholar]
- Sotubadi, S.V.; Liu, R.; Nguyen, V. Explainable AI for Tool Wear Prediction in Turning. In Proceedings of the ASME 2023 18th International Manufacturing Science and Engineering Conference (2023), New Brunswick, NJ, USA, 12–16 June 2023. [Google Scholar]
- Li, Y.; Wang, J.; Huang, Z.; Gao, R.X. Physics-informed Meta Learning for Machining Tool Wear Prediction. J. Manuf. Syst. 2022, 62, 17–27. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Zhao, R.; Gao, R.X. Physics Guided Neural Network for Machining Tool Wear Prediction. J. Manuf. Syst. 2020, 57, 298–310. [Google Scholar] [CrossRef]
- Schaefer, C. Signaltechnische Voraussetzungen und Analyseverfahren zur Überwachung von Präzisions- und Ultrapräzisionsbearbeitungsverfahren; WZL of RWTH Aachen: Aachen, Germany, 2013. [Google Scholar]
- Benardos, P.; Vosniakos, G.-C. Removed Material Volume Calculations in CNC Milling by Exploiting CAD Functionality. Int. J. Comput. Aided Eng. Technol. 2017, 10, 491–503. [Google Scholar] [CrossRef]
- Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.T.; Blum, M.; Hutter, F. Efficient and Robust Automated Machine Learning. In Proceedings of the 28th International Conference on Neural Information Processing Systems (2015), Montreal, QC, Canada, 7–12 December 2015; Volume 2, pp. 2755–2763. [Google Scholar]
- Sharma, P.; Mirzan, S.R.; Bhandari, A.; Pimpley, A.; Eswaran, A.; Srinivasan, S.; Shao, L. Evaluating Tree Explanation Methods for Anomaly Reasoning: A Case Study of SHAP TreeExplainer and TreeInterpreter. In Proceedings of the International Conference on Conceptual Modeling (2020), Vienna, Austria, 3–6 November 2020. [Google Scholar]
- CN-0549: IEPE-Compliant, CbM Machine Learning Enablement Platform. Available online: https://www.analog.com/en/design-center/reference-designs/circuits-from-the-lab/cn0549.html#rd-overview (accessed on 13 August 2023).
- CN-0532: IEPE-Compatible Interface for Wideband MEMS Accelerometer Sensors. Available online: https://www.analog.com/en/design-center/reference-designs/circuits-from-the-lab/cn0532.html (accessed on 13 August 2023).
- CN-0540: 24-Bit Data Acquisition System for IEPE Sensors. Available online: https://www.analog.com/en/design-center/reference-designs/circuits-from-the-lab/cn0540.html (accessed on 13 August 2023).
- Feurer, M.; Eggensperger, K.; Falkner, S.; Lindauer, M.; Hutter, F. Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning. J. Mach. Learn. Res. 2022, 23, 11936–11996. [Google Scholar]
- Vakhrushev, A.; Ryzhkov, A.; Savchenko, M.; Simakov, D.; Damdinov, R.; Tuzhilin, T. LightAutoML: AutoML Solution for a Large Financial Services Ecosystem. arXiv 2021, arXiv:2109.01528. [Google Scholar]
- Wang, C.; Wu, Q.; Weimer, M.; Zhu, E. FLAML: A Fast and Lightweight AutoML Library. In Proceedings of the Fourth Conference on Machine Learning and Systems (2021), Online, 8–11 November 2022. [Google Scholar]
- Herzen, J.; Lässig, F.; Piazzetta, S.G.; Neuer, T.; Tafti, L.; Raille, G.; van Pottelbergh, T.; Pasieka, M.; Skrodzki, A.; Huguenin, N.; et al. Darts: User-Friendly Modern Machine Learning for Time Series. J. Mach. Learn. Res. 2022, 23, 5442–5447. [Google Scholar]
- Liaw, R.; Liang, E.; Nishihara, R.; Moritz, P.; Gonzalez, J.E.; Stoica, I. Tune: A Research Platform for Distributed Model Selection and Training. arXiv 2018, arXiv:1807.05118. [Google Scholar]
- Li, L.; Jamieson, K.; Rostamizadeh, A.; Gonina, E.; Hardt, M.; Recht, B.; Talwalkar, A. A System for Massively Parallel Hyperparameter Tuning. In Proceedings of the 3rd Conference on Systems and Machine Learning (2020), Virtual, 24–26 November 2020. [Google Scholar]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2019), Anchorage, AK, USA, 4–8 August 2019; pp. 2623–2631. [Google Scholar]
Feature Subset | Parameter | Description |
---|---|---|
Instantaneous | Tensor, including the bins of the power spectra between 0 and 6 kHz for the three accelerometer channels (x, y, z) | |
Cumulative | Total cutting time | |
V | Total removed material volume | |
Q | Material removal rate | |
Cutting Parameters | Feed per tooth | |
Cutting speed | ||
Axial depth of cut | ||
Workpiece Parameters | No. of pocket corners | |
Pocket radius | ||
Pocket depth | ||
Pocket center point | ||
Rotation angle |
Method | Metric | Prediction Errors per Test Tool (mm) | |||||||
---|---|---|---|---|---|---|---|---|---|
Tool 1 | Tool 2 | Tool 3 | Tool 4 | Tool 5 | Tool 6 | Tool 7 | Mean | ||
Hand-crafted | RMSE | 0.169 | 0.140 | 0.189 | 0.131 | 0.199 | 0.182 | 0.162 | 0.167 |
MAE | 0.133 | 0.102 | 0.155 | 0.097 | 0.147 | 0.143 | 0.132 | 0.130 | |
Ours | RMSE | 0.038 | 0.068 | 0.107 | 0.026 | 0.066 | 0.065 | 0.041 | 0.059 |
MAE | 0.031 | 0.046 | 0.070 | 0.021 | 0.055 | 0.045 | 0.028 | 0.042 |
Future Features | Metric | Prediction Errors per Test Tool (Minutes) | |||||||
---|---|---|---|---|---|---|---|---|---|
Tool 1 | Tool 2 | Tool 3 | Tool 4 | Tool 5 | Tool 6 | Tool 7 | Mean | ||
No | RMSE | 5.7 | 12.9 | 7.9 | 16.5 | 6.9 | 7.1 | 9.6 | 9.5 |
MAE | 4.7 | 10.8 | 7.2 | 14.0 | 6.0 | 4.9 | 6.5 | 7.8 | |
Yes | RMSE | 2.0 | 2.7 | 9.9 | 12.2 | 9.8 | 3.0 | 6.1 | 6.5 |
MAE | 1.6 | 2.4 | 9.9 | 11.4 | 9.4 | 2.6 | 5.6 | 6.1 |
Metric | Prediction Errors for Ref. Tool 1 per Training Set (mm) | |
---|---|---|
Training Set 1: Tools 1–7 and Ref. Tool 2 | Training Set 2: Tools 1–7 | |
RMSE | 0.054 | 0.108 |
MAE | 0.041 | 0.078 |
Future Features | Metric | Prediction Errors for Ref. Tool 1 per Training Set (Minutes) | |
---|---|---|---|
Training Set 1: Tools 1–7 and Ref. Tool 2 | Training Set 2: Tools 1–7 | ||
No | RMSE | 14.9 | 4.9 |
MAE | 12.7 | 3.5 | |
Yes | RMSE | 22.8 | 2.2 |
MAE | 19.3 | 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krupp, L.; Wiede, C.; Friedhoff, J.; Grabmaier, A. Explainable Remaining Tool Life Prediction for Individualized Production Using Automated Machine Learning. Sensors 2023, 23, 8523. https://doi.org/10.3390/s23208523
Krupp L, Wiede C, Friedhoff J, Grabmaier A. Explainable Remaining Tool Life Prediction for Individualized Production Using Automated Machine Learning. Sensors. 2023; 23(20):8523. https://doi.org/10.3390/s23208523
Chicago/Turabian StyleKrupp, Lukas, Christian Wiede, Joachim Friedhoff, and Anton Grabmaier. 2023. "Explainable Remaining Tool Life Prediction for Individualized Production Using Automated Machine Learning" Sensors 23, no. 20: 8523. https://doi.org/10.3390/s23208523