Structural Optimization Design of Dual Robot Gripper Unloading Device Based on Intelligent Optimization Algorithms and Generative Design
<p>Methodology of the study.</p> "> Figure 2
<p>Iterative computation process of NSGA-III algorithm.</p> "> Figure 3
<p>Structure of the dual robot gripper unloading device.</p> "> Figure 4
<p>Support column structure.</p> "> Figure 5
<p>Fitting accuracy of the model.</p> "> Figure 6
<p>Meta-model a.</p> "> Figure 7
<p>Meta-model b.</p> "> Figure 8
<p>Meta-model c.</p> "> Figure 9
<p>Sensitivity analysis of design variables.</p> "> Figure 10
<p>Pareto optimal solution set.</p> "> Figure 11
<p>Visualization of preliminary results.</p> "> Figure 12
<p>Generative design process for support column structure.</p> "> Figure 13
<p>Generative design process for preliminary results.</p> "> Figure 14
<p>Structural mass produced by different mesh elements.</p> "> Figure 15
<p>Processing of the final generative optimized design structure.</p> "> Figure 16
<p>Deformation of the structure.</p> "> Figure 17
<p>The stress situation of the structure.</p> ">
Abstract
:1. Introduction
2. Methodology of the Study
2.1. NSGA-III Algorithm Optimization Process
2.2. Generative Design Theory
3. Structure Description of Double Robot Gripper Unloading Device
3.1. Design of Experiments
3.2. Establishment of Meta-Model
3.3. Sensitivity Analysis
4. Optimized Design of the NSGA-III Algorithm
4.1. Establishment of an Objective Function
4.2. Multi-Objective Optimization Design
4.3. Optimization Results of NSGA-III Algorithm
5. Generative Designs Using the Results of NSGA-III Optimization
- (1)
- Automatic iterative computations are performed based on the initial parameter set, providing information for the next-generation computations;
- (2)
- Generated structures are evaluated, and tetrahedral meshes are excluded due to their low quality, and the evaluation results are utilized in the next generation;
- (3)
- Model modifications are made based on feedback from the previous optimization algorithm;
- (4)
- Hexahedral meshes are employed for optimization by studying iteratively computed structures;
- (5)
- The quality of different structures is assessed using selected mesh types and design variables;
- (6)
- All generated results are evaluated, and mesh elements with stable structural quality are chosen as the foundation for the next-generation optimization;
- (7)
- Based on the outcomes of extensive iterative computations, the optimal optimization results are selected, accompanied by independent structural solutions;
- (8)
- Trimming and validation are applied to the optimized structure to ensure manufacturing requirements are met.
5.1. Generative Design of Pre-Optimized Structures
5.2. Determining Mesh Elements for Generative Design
5.3. Optimization Results of Support Column Components
5.4. Verification Results of Optimized Design Structures
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, D.; Li, X.; Wang, Y. Bionic design of universal gripper for nursing robot with hybrid joints and variable Equivalent Link Length. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 600. [Google Scholar] [CrossRef]
- Zheng, Y.; Pi, J.; Guo, T.; Xu, L.; Liu, J.; Kong, J. Design and simulation of a gripper structure of cluster tomato based on manual picking behavior. Front. Plant Sci. 2022, 13, 974456. [Google Scholar] [CrossRef] [PubMed]
- Fujita, M.; Ikeda, S.; Fujimoto, T.; Shimizu, T.; Ikemoto, S.; Miyamoto, T. Development of universal vacuum gripper for wall-climbing robot. Adv. Robot. 2018, 32, 283–296. [Google Scholar] [CrossRef]
- Hsiao, H.; Sun, J.; Zhang, H.; Zhao, J. A Mechanically Intelligent and Passive Gripper for Aerial Perching and Grasping. IEEE/ASME Trans. Mechatron. 2022, 27, 5243–5253. [Google Scholar] [CrossRef]
- Rawashdeh, N.; Abu-Alrub, N. Gripper Control Design and Simulation for OpenROV Submarine Robot. Actuators 2021, 10, 252. [Google Scholar] [CrossRef]
- Bo, L.; Wang, H. Nonlinear dynamic buckling and multi-objective design optimization of FG-GPLRP plates. Int. J. Mech. Sci. 2023, 256, 108516. [Google Scholar] [CrossRef]
- DiJulio, D.; Björgvinsdóttir, H.; Zendler, C.; Bentley, P.M. Population-based metaheuristic optimization in neutron optics and shielding design. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 835, 157–162. [Google Scholar] [CrossRef]
- Abualigah, L.; Alsalibi, B.; Shehab, M.; Alshinwan, M.; Khasawneh, A.M.; Alabool, H. A parallel hybrid krill herd algorithm for feature selection. Int. J. Mach. Learn. Cybern. 2021, 12, 783–806. [Google Scholar] [CrossRef]
- Li, B.; Wada, K. Communication latency tolerant parallel algorithm for particle swarm optimization. Parallel Comput. 2011, 37, 1–10. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A. Advances in sine cosine algorithm: A comprehensive survey. Artif. Intell. Rev. 2021, 54, 2567–2608. [Google Scholar] [CrossRef]
- Zhang, L.; Long, Z.; Cai, J.; Luo, F.; Fang, J.; Wang, M.Y. Multi-objective optimization design of a connection frame in macro–micro motion platform. Appl. Soft Comput. 2015, 32, 369–382. [Google Scholar] [CrossRef]
- Kaveh, A.; Abedi, M. Analysis and optimal design of scissor-link foldable structures. Eng. Comput. 2019, 35, 593–604. [Google Scholar] [CrossRef]
- Guan, Y.; Wang, L.; Cui, H. Optimization Analysis of Thermodynamic Characteristics of Serrated Plate-Fin Heat Exchanger. Sensors 2023, 23, 4158. [Google Scholar] [CrossRef] [PubMed]
- Jain, H.; Deb, K. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 2013, 18, 602–622. [Google Scholar] [CrossRef]
- Qu, Z.; Zhang, P.; Hu, Y.; Yang, H.; Guo, T.; Zhang, K.; Zhang, J. Optimal Design of Agricultural Mobile Robot Suspension System Based on NSGA-III and TOPSIS. Agriculture 2023, 13, 207. [Google Scholar] [CrossRef]
- Li, B.; Huang, S.; Ye, J.; Li, Y.; Shen, A.; Deng, J. Optimal design method for LLCL filters based on NSGA-III. J. Power Electron. 2020, 20, 1250–1260. [Google Scholar] [CrossRef]
- Li, X.; Song, Y.; Mao, J.; Zhang, Z. Many-objective rapid optimization of reactor shielding design based on NSGA-III. Ann. Nucl. Energy 2022, 177, 109322. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Y.; Tang, Y.; Zhang, R.; Li, H.; Gu, J. Multi-objective optimization and dynamic response predictions of an articulated offshore wind turbine. Ocean. Eng. 2023, 273, 114017. [Google Scholar] [CrossRef]
- Xu, J.; Wang, L.; Yuan, J.; Shi, J.; Wang, Z.; Zhang, B.; Luo, Z.; Tan, A.C.C. A cost-effective CNN-BEM coupling framework for design optimization of horizontal axis tidal turbine blades. Energy 2023, 282, 128707. [Google Scholar] [CrossRef]
- Plocher, J.; Panesar, A. Review on design and structural optimisation in additive manufacturing: Towards next-generation lightweight structures. Mater. Des. 2019, 183, 108164. [Google Scholar] [CrossRef]
- Marinov, M.; Amagliani, M.; Barback, T.; Flower, J.; Barley, S.; Furuta, S.; Charrot, P.; Henley, I.; Santhanam, N.; Finnigan, G.T.; et al. Generative Design Conversion to Editable and Watertight Boundary Representation. Comput.-Aided Des. 2019, 115, 194–205. [Google Scholar] [CrossRef]
- Lakshmi Srinivas, G.; Javed, A. Topology optimization of rigid-links for industrial manipulator considering dynamic loading conditions. Mech. Mach. Theory 2020, 153, 103979. [Google Scholar] [CrossRef]
- Srinivas, G.L.; Javed, A. Synthesis and performance evaluation of manipulator-link using improved weighted density matrix approach with topology optimization method. Eng. Sci. Technol. Int. J. 2021, 24, 1239–1252. [Google Scholar] [CrossRef]
- Alkalla, M.G.; Fanni, M.A. Integrated structure/control design of high-speed flexible robot arms using topology optimization. Mech. Based Des. Struct. Mach. 2021, 49, 381–402. [Google Scholar] [CrossRef]
- Liang, M.; Wang, B.; Yan, T. Dynamic optimization of robot arm based on flexible multi-body model. J. Mech. Sci. Technol. 2017, 31, 3747–3754. [Google Scholar] [CrossRef]
- Lakshmi Srinivas, G.; Jaya Aadityaa, G.; Pratap Singh, S.; Javed, A. Energy efficiency enhancement of SCORBOT ER-4U manipulator using topology optimization method. Mech. Based Des. Struct. Mach. 2023, 51, 4635–4654. [Google Scholar] [CrossRef]
- Jaen-Sola, P.; Oterkus, E.; McDonald, A. Parametric lightweight design of a direct-drive wind turbine electrical generator supporting structure for minimising dynamic response. Ships Offshore Struct. 2021, 16, 266–274. [Google Scholar] [CrossRef]
- Oh, S.; Jung, Y.; Kim, S.; Lee, I.; Kang, N. Deep generative design: Integration of topology optimization and generative models. J. Mech. Des. 2019, 141, 111405. [Google Scholar] [CrossRef]
- Jaisawal, R.; Agrawal, V. Generative Design Method (GDM)—A state of art. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; p. 012036. [Google Scholar]
- Watson, M.; Leary, M.; Downing, D.; Brandt, M. Generative design of space frames for additive manufacturing technology. Int. J. Adv. Manuf. Technol. 2023, 127, 4619–4639. [Google Scholar] [CrossRef]
- Sun, S.; Ge, H.; Gu, D.; Cong, F.; Zhou, H. Generative design of a calf structure for a humanoid robot based on gait simulation. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 405. [Google Scholar] [CrossRef]
- Mukkavaara, J.; Sandberg, M. Architectural Design Exploration Using Generative Design: Framework Development and Case Study of a Residential Block. Buildings 2020, 10, 201. [Google Scholar] [CrossRef]
- Leary, M. Chapter 7—Generative design. In Design for Additive Manufacturing; Elsevier: Amsterdam, The Netherlands, 2020; pp. 203–222. [Google Scholar]
- Wang, H.; Du, W.; Zhao, Y.; Wang, Y.; Hao, R.; Yang, M. Joints for treelike column structures based on generative design and additive manufacturing. J. Constr. Steel Res. 2021, 184, 106794. [Google Scholar] [CrossRef]
- Pilagatti, A.N.; Atzeni, E.; Salmi, A. Exploiting the generative design potential to select the best conceptual design of an aerospace component to be produced by additive manufacturing. Int. J. Adv. Manuf. Technol. 2023, 126, 5597–5612. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Ahmadi, M.A.; Shafaei, A.; Ashouri, M.; Toghyani, S. Thermodynamic analysis and optimization of the Atkinson engine by using NSGA-II. Int. J. Low-Carbon Technol. 2016, 11, 317–324. [Google Scholar] [CrossRef]
- Kidanu, R.A.; Cunha, M.; Salomons, E.; Ostfeld, A. Improving Multi-Objective Optimization Methods of Water Distribution Networks. Water 2023, 15, 2561. [Google Scholar] [CrossRef]
- Geng, H.; Zhou, Z.; Shen, J.; Song, F. A Dual-Population-Based NSGA-III for Constrained Many-Objective Optimization. Entropy 2023, 25, 13. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Ma, Y.; Liu, T.; Ding, Y.; Qu, W. Experimental Study of Surface Roughness of Pine Wood by High-Speed Milling. Forests 2023, 14, 1275. [Google Scholar] [CrossRef]
- Balta, B.; Sonmez, F.O.; Cengiz, A. Speed losses in V-ribbed belt drives. Mech. Mach. Theory 2015, 86, 1–14. [Google Scholar] [CrossRef]
- Alawadhi, K.; Alzuwayer, B.; Mohammad, T.A.; Buhemdi, M.H. Design and Optimization of a Centrifugal Pump for Slurry Transport Using the Response Surface Method. Machines 2021, 9, 60. [Google Scholar] [CrossRef]
- Kountzakis, C.; Tsachouridou-Papadatou, V. Non-Parametric Regression and Riesz Estimators. Axioms 2023, 12, 375. [Google Scholar] [CrossRef]
- Sun, T.; Lian, B. Stiffness and mass optimization of parallel kinematic machine. Mech. Mach. Theory 2018, 120, 73–88. [Google Scholar] [CrossRef]
- Zhao, X.; Yan, X.; Chen, Z.; Li, L.; Ren, R. Dynamic and Static Multiobjective Topology Optimization for Gears of Directional Drill Transmission System. Adv. Civ. Eng. 2023, 2023, 2977092. [Google Scholar] [CrossRef]
- Xie, B.; Wu, X.; Liu, L.; Zhang, Y. Topological Design of a Hinger Bracket Based on Additive Manufacturing. Materials 2023, 16, 4061. [Google Scholar] [CrossRef]
Std | Design Variable 1 L: Length (mm) | Design Variable 2 W: Width (mm) | Design Variable 3 H: Highly (mm) | Design Variable 4 T: Thickness (mm) |
---|---|---|---|---|
1 | 200.00 | 180.00 | 1383.00 | 20.00 |
2 | 180.00 | 180.00 | 1383.00 | 20.00 |
3 | 220.00 | 180.00 | 1383.00 | 20.00 |
4 | 200.00 | 162.00 | 1383.00 | 20.00 |
5 | 200.00 | 198.00 | 1383.00 | 20.00 |
6 | 200.00 | 180.00 | 1244.70 | 20.00 |
7 | 200.00 | 180.00 | 1521.30 | 20.00 |
8 | 200.00 | 180.00 | 1383.00 | 18.00 |
9 | 200.00 | 180.00 | 1383.00 | 22.00 |
10 | 185.92 | 167.32 | 1285.60 | 18.59 |
11 | 214.08 | 167.32 | 1285.60 | 18.59 |
12 | 185.92 | 192.68 | 1285.60 | 18.59 |
13 | 214.08 | 192.68 | 1285.60 | 18.59 |
14 | 185.92 | 167.32 | 1480.40 | 18.59 |
15 | 214.08 | 167.32 | 1480.40 | 18.59 |
16 | 185.92 | 192.68 | 1480.40 | 18.59 |
17 | 214.08 | 192.68 | 1480.40 | 18.59 |
18 | 185.92 | 167.32 | 1285.60 | 21.41 |
19 | 214.08 | 167.32 | 1285.60 | 21.41 |
20 | 185.92 | 192.68 | 1285.60 | 21.41 |
21 | 214.08 | 192.68 | 1285.60 | 21.41 |
22 | 185.92 | 167.32 | 1480.40 | 21.41 |
23 | 214.08 | 167.32 | 1480.40 | 21.41 |
24 | 185.92 | 192.68 | 1480.40 | 21.41 |
25 | 214.08 | 192.68 | 1480.40 | 21.41 |
Material | Density/(kg/m³) | Young’s Modulus/1011 Pa | Poisson’s Ratio | CTE/C−1 |
---|---|---|---|---|
Structural steel | 7850 | 2.1 | 0.3 | 1.2 × 10−5 |
Design Variables | |
---|---|
Mesh type | Tetrahedron, hexahedron |
Structural parameters | L:183.13 W: 165.05 H:1324.08 T: 20.70 unit: (mm) |
Design quality of structures | Less than 132 kg |
Mesh unit | 2000–80,000 |
Transition | Fast, slow |
Span angle center | Large angle 60~91°, medium 24~75°, fine 12~36° |
Mesh convergence rate | 5% |
Iterative computation | 10–500 |
Displacement constraint | 0.003 mm |
Response constraints | Quality retention range 40–60% |
Variable | a | b | c |
---|---|---|---|
Transition | Fast | ||
Span angle center | Large angle | ||
Iterative computation | 10–500 | ||
Mesh | Hexahedral coarse mesh | Hexahedral transition mesh | Hexahedral fine mesh |
Mass | 107.11 kg | 106.29 kg | 106.24 kg |
A | B | C | D |
---|---|---|---|
Fine mesh | Coarse mesh | Fine mesh | Fine mesh |
Quality retention rate (50%) | Quality retention rate (50%) | Quality retention rate (40–55%) | Quality retention rate (40–50%) |
Design constraints | Structural symmetry | ||
No generative limiting displacement constraints | Generative limit displacement constraint (0.003 mm) | No generative limiting displacement constraints | Generative limit displacement constraint (0.003 mm) |
Support column mass 106.26 kg | Support column mass 106.8 kg | Support column mass 130.94 kg | Support column mass 106.24 kg |
Mesh Settings | |
---|---|
Minimum element size | 0.400 |
Evaluation factor | 0.998 |
Maximum corner angle | 92 |
Number of elements | 51,300 |
Number of nodes | 257,490 |
Typology | Mass (kg) | Strain Energy (mJ) | Inherent Energy (mJ) |
---|---|---|---|
IS | 147.65 | 1.85 × 10−5 | 0.87 |
NOS | 132.00 | 1.98 × 10−5 | 0.89 |
CODS | 107.65 | 7.30 × 10−4 | 1.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, J.; Sun, X.; Liu, T.; Tang, J.; Wang, J.; Hu, X. Structural Optimization Design of Dual Robot Gripper Unloading Device Based on Intelligent Optimization Algorithms and Generative Design. Sensors 2023, 23, 8298. https://doi.org/10.3390/s23198298
Jia J, Sun X, Liu T, Tang J, Wang J, Hu X. Structural Optimization Design of Dual Robot Gripper Unloading Device Based on Intelligent Optimization Algorithms and Generative Design. Sensors. 2023; 23(19):8298. https://doi.org/10.3390/s23198298
Chicago/Turabian StyleJia, Jiguang, Xuan Sun, Ting Liu, Jiazhi Tang, Jiabing Wang, and Xianxuan Hu. 2023. "Structural Optimization Design of Dual Robot Gripper Unloading Device Based on Intelligent Optimization Algorithms and Generative Design" Sensors 23, no. 19: 8298. https://doi.org/10.3390/s23198298
APA StyleJia, J., Sun, X., Liu, T., Tang, J., Wang, J., & Hu, X. (2023). Structural Optimization Design of Dual Robot Gripper Unloading Device Based on Intelligent Optimization Algorithms and Generative Design. Sensors, 23(19), 8298. https://doi.org/10.3390/s23198298