Adaptive Fuzzy Event-Triggered Cooperative Control for Multi-Robot Systems: A Predefined-Time Strategy
<p>The directed topology.</p> "> Figure 2
<p>Angle-tracking effect graph.</p> "> Figure 3
<p>Angular velocity-tracking effect graph.</p> "> Figure 4
<p>Angle-tracking error graph.</p> "> Figure 5
<p>Angular velocity-tracking error graph.</p> "> Figure 6
<p>Control input graph.</p> "> Figure 7
<p>Fuzzy logic system approximation graph (f<sub>1</sub>).</p> "> Figure 8
<p>Fuzzy logic system approximation graph (f<sub>2</sub>).</p> "> Figure 9
<p>Fuzzy logic system approximation graph (f<sub>3</sub>).</p> "> Figure 10
<p>Fuzzy logic system approximation graph (f<sub>4</sub>).</p> "> Figure 11
<p>Fuzzy logic system approximation error graph.</p> "> Figure 12
<p>Tracking of angles with event triggering.</p> "> Figure 13
<p>Tracking of angular velocities with event triggering.</p> "> Figure 14
<p>Error of angles with event triggering.</p> "> Figure 15
<p>Error of angular velocities with event triggering.</p> "> Figure 16
<p>The control input with event triggering.</p> "> Figure 17
<p>Triggering event graph.</p> "> Figure 18
<p>Comparison graph of angle tracking.</p> "> Figure 19
<p>Comparison graph of triggering events.</p> "> Figure 20
<p>Angle-tracking effect graph (comparison).</p> "> Figure 21
<p>Control input graph (comparison).</p> ">
Abstract
:1. Introduction
2. Preliminaries and Problem Formulation
2.1. Model Description
2.2. Graph Theory Description
2.3. Fuzzy Logic Systems Description
2.4. Notions
2.5. Assumption and Lemmas
3. Main Results
3.1. Predefined-Time Control Based on BLF
3.2. Predefined-Time Fuzzy Logic System Design
3.3. Event-Triggered Mechanism Design
4. Simulations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ji, Y.; Chen, L.; Zhang, D.; Shao, X. Neural network-based nonsingular fixed-time pose tracking control for spacecraft with actuator faults. Adv. Space Res. 2022, 69, 2555–2573. [Google Scholar] [CrossRef]
- Lu, Q.; Chen, J.; Wang, Q.; Zhang, D.; Sun, M.; Su, C.-Y. Practical fixed-time trajectory tracking control of constrained wheeled mobile robots with kinematic disturbances. ISA Trans. 2022, 129, 273–286. [Google Scholar] [CrossRef]
- He, W.; Kang, F.; Kong, L.; Feng, Y.; Cheng, G.; Sun, C. Vibration Control of a Constrained Two-Link Flexible Robotic Manipulator with Fixed-Time Convergence. IEEE Trans. Cybern. 2022, 52, 5973–5983. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Guo, Z.; Yang, X.; Luo, X.; Guan, X. Finite-Time Tracking Control of Autonomous Underwater Vehicle Without Velocity Measurements. IEEE Trans. Syst. Man Cybern. Syst. 2021, 52, 6759–6773. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Y.; Zhang, X. Extended state observer-based fixed-time trajectory tracking control of autonomous surface vessels with uncertainties and output constraints. ISA Trans. 2021, 128, 174–183. [Google Scholar] [CrossRef]
- Shi, L.; Cheng, Y.; Shao, J.; Sheng, H.; Liu, Q. Cucker-Smale flocking over cooperation-competition networks. Automatica 2022, 135, 109988. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, Z. Stabilizing design for discrete-time reversible switched linear control systems: A deadbeat control approach. Automatica 2021, 129, 109617. [Google Scholar] [CrossRef]
- Hamrah, R.; Warier, R.R.; Sanyal, A.K. Finite-time stable estimator for attitude motion in the presence of bias in angular velocity measurements. Automatica 2021, 132, 109815. [Google Scholar] [CrossRef]
- Garg, K.; Arabi, E.; Panagou, D. Fixed-time control under spatiotemporal and input constraints: A Quadratic Programming based approach. Automatica 2022, 141, 110314. [Google Scholar] [CrossRef]
- Yao, D.; Dou, C.; Zhao, N.; Zhang, T. Finite-time consensus control for a class of multi-agent systems with dead-zone input. J. Frankl. Inst. 2021, 358, 3512–3529. [Google Scholar] [CrossRef]
- Li, H.; Liu, C.-L.; Zhang, Y.; Chen, Y.-Y. Adaptive neural networks-based fixed-time fault-tolerant consensus tracking for uncertain multiple Euler–Lagrange systems. ISA Trans. 2021, 129, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Wang, C.; Zuo, Z.; Cai, X. Event-triggered based practical fixed-time consensus for chained-form multi-agent systems with dynamic disturbances. Neurocomputing 2022, 493, 414–421. [Google Scholar] [CrossRef]
- Sánchez Torres, J.D.; Gomez-Gutierrez, D.; López, E.; Loukianov, A.G. A class of predefined-time stable dynamical systems. IMA J. Math. Control Inf. 2017, 35, 1–29. [Google Scholar] [CrossRef]
- Becerra, H.M.; Vázquez, C.R.; Arechavaleta, G.; Delfin, J. Predefined-Time Convergence Control for High-Order Integrator Systems Using Time Base Generators. IEEE Trans. Control Syst. Technol. 2018, 26, 1866–1873. [Google Scholar] [CrossRef]
- Xiong, T.; Gu, Z. Observer-based adaptive fixed-time formation control for multi-agent systems with unknown uncertainties. Neurocomputing 2021, 423, 506–517. [Google Scholar] [CrossRef]
- Shi, P.; Yu, J.; Liu, Y.; Dong, X.; Li, Q.; Ren, Z. Robust time-varying output formation tracking for heterogeneous multi-agent systems with adaptive event-triggered mechanism. J. Frankl. Inst. 2022, 359, 5842–5864. [Google Scholar] [CrossRef]
- Tahoun, A.H.; Arafa, M. Adaptive leader–follower control for nonlinear uncertain multi-agent systems with an uncertain leader and unknown tracking paths. ISA Trans. 2022, 131, 61–72. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, M.; Xia, X.; Yi, Y. Adaptive cooperative dynamic surface control of non-strict feedback multi-agent systems with input dead-zones and actuator failures. Neurocomputing 2021, 442, 48–63. [Google Scholar] [CrossRef]
- Li, J.; Wang, J. Reinforcement learning based proportional–integral–derivative controllers design for consensus of multi-agent systems. ISA Trans. 2022, 132, 377–386. [Google Scholar] [CrossRef]
- Singh, P.; Giri, D.K.; Ghosh, A.K. Robust backstepping sliding mode aircraft attitude and altitude control based on adaptive neural network using symmetric BLF. Aerosp. Sci. Technol. 2022, 126, 107653. [Google Scholar] [CrossRef]
- He, W.; Chen, Y.; Yin, Z. Adaptive Neural Network Control of an Uncertain Robot with Full-State Constraints. IEEE Trans. Cybern. 2016, 46, 620–629. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wu, Y.; Wang, F.; Zhao, Y. TABLF-based adaptive control for uncertain nonlinear systems with time-varying asymmetric full-state constraints. Int. J. Control 2021, 94, 1238–1246. [Google Scholar] [CrossRef]
- Derakhshannia, M.; Moosapour, S.S. Disturbance observer-based sliding mode control for consensus tracking of chaotic nonlinear multi-agent systems. Math. Comput. Simul. 2022, 194, 610–628. [Google Scholar] [CrossRef]
- Ren, C.-E.; Du, T.; Li, G.; Shi, Z. Disturbance Observer-Based Consensus Control for Multiple Robotic Manipulators. IEEE Access 2018, 6, 51348–51354. [Google Scholar] [CrossRef]
- Han, T.; Li, J.; Guan, Z.-H.; Cai, C.-X.; Zhang, D.-X.; He, D.-X. Containment control of multi-agent systems via a disturbance observer-based approach. J. Frankl. Inst. 2019, 356, 2919–2933. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Y.; Liu, J. Finite-time leader-following output consensus for multi-agent systems via extended state observer. Automatica 2021, 124, 109133. [Google Scholar] [CrossRef]
- Yue, J.; Liu, L.; Peng, Z.; Wang, D.; Li, T. Data-driven adaptive extended state observer design for autonomous surface vehicles with unknown input gains based on concurrent learning. Neurocomputing 2022, 467, 337–347. [Google Scholar] [CrossRef]
- Mousavi, A.; Aryankia, K.; Selmic, R.R. A distributed FDI cyber-attack detection in discrete-time nonlinear multi-agent systems using neural networks. Eur. J. Control 2022, 66, 100646. [Google Scholar] [CrossRef]
- Sharifi, A.; Sharafian, A.; Ai, Q. Adaptive MLP neural network controller for consensus tracking of Multi-Agent systems with application to synchronous generators. Expert Syst. Appl. 2021, 184, 115460. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Jiao, H.; Zhang, S. Globally fuzzy consensus of hybrid-order stochastic nonlinear multi-agent systems. ISA Trans. 2022, 130, 184–194. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Yuan, X. Global Fuzzy Adaptive Consensus Control of Unknown Nonlinear Multiagent Systems. IEEE Trans. Fuzzy Syst. 2020, 28, 510–522. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, B.; Lin, C.; Shang, Y. Fuzzy Adaptive Fixed-time Consensus Tracking Control of High-order Multi-agent Systems. IEEE Trans. Fuzzy Syst. 2020, 30, 567–578. [Google Scholar] [CrossRef]
- Xie, X.; Wei, C.; Gu, Z.; Shi, K. Relaxed Resilient Fuzzy Stabilization of Discrete-Time Takagi–Sugeno Systems via a Higher Order Time-Variant Balanced Matrix Method. IEEE Trans. Fuzzy Syst. 2022, 30, 5044–5050. [Google Scholar] [CrossRef]
- Yan, S.; Gu, Z.; Park, J.H.; Xie, X. Sampled Memory-Event-Triggered Fuzzy Load Frequency Control for Wind Power Systems Subject to Outliers and Transmission Delays. IEEE Trans. Cybern. 2023, 53, 4043–4053. [Google Scholar] [CrossRef]
- Zhao, D.-J.; Yang, X.; Dai, M.-Z.; Wu, J.; Zhang, C. Multi-spacecraft attitude synchronization based on performance adjustable event-triggered control. Adv. Space Res. 2022, 70, 303–314. [Google Scholar] [CrossRef]
- Zhou, W.; Sun, Y.; Zhang, X.; Shi, P. Cluster Synchronization of Coupled Neural Networks with Lévy Noise via Event-Triggered Pinning Control. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6144–6157. [Google Scholar] [CrossRef]
- Tan, Y.; Yuan, Y.; Xie, X.; Tian, E.; Liu, J. Observer-Based Event-Triggered Control for Interval Type-2 Fuzzy Networked System with Network Attacks. IEEE Trans. Fuzzy Syst. 2023, 31, 2788–2798. [Google Scholar] [CrossRef]
- Hou, Z.; Lu, P. Event-triggered integral sliding mode formation control for multiple quadrotor UAVs with unknown disturbances. Frankl. Open 2022, 1, 17–29. [Google Scholar] [CrossRef]
- Xing, L.; Wen, C.; Liu, Z.; Su, H.; Cai, J. Event-Triggered Adaptive Control for a Class of Uncertain Nonlinear Systems. IEEE Trans. Autom. Control 2017, 62, 2071–2076. [Google Scholar] [CrossRef]
- Ma, Z.; Ma, H. Adaptive Fuzzy Backstepping Dynamic Surface Control of Strict-Feedback Fractional-Order Uncertain Nonlinear Systems. IEEE Trans. Fuzzy Syst. 2020, 28, 122–133. [Google Scholar] [CrossRef]
- Wang, Q.; Cao, J.; Liu, H. Adaptive Fuzzy Control of Nonlinear Systems with Predefined Time and Accuracy. IEEE Trans. Fuzzy Syst. 2022, 30, 5152–5165. [Google Scholar] [CrossRef]
- Yang, H.; Ye, D. Adaptive fixed-time bipartite tracking consensus control for unknown nonlinear multi-agent systems: An information classification mechanism. Inf. Sci. 2018, 459, 238–254. [Google Scholar] [CrossRef]
i | Dynamic ETM | ETM in [39] |
---|---|---|
1 | 85.6% | 68% |
2 | 85.5% | 70.7% |
3 | 85.1% | 66.8% |
4 | 84.5% | 71.3% |
i | Predefined-Time Controller (rad) | Fixed-Time Controller (rad) |
---|---|---|
1 | 0.1466 | 0.6648 |
2 | 0.0491 | 1.9050 |
3 | 0.1897 | 1.2000 |
4 | 0.2125 | 2.0620 |
i | Predefined-Time Controller (rad/s) | Fixed-Time Controller (rad/s) |
---|---|---|
1 | 1.6230 | 2.0540 |
2 | 0.5945 | 3.5950 |
3 | 1.9640 | 4.4800 |
4 | 2.2020 | 3.5730 |
i | Predefined-Time Controller | Fixed-Time Controller |
---|---|---|
1 | 0.0250 | 1.3000 |
2 | 0.0184 | 2.1630 |
3 | 0.0305 | 1.9910 |
4 | 0.0363 | 1.9630 |
i | Predefined-Time Controller | Fixed-TIME Controller |
---|---|---|
1 | 0.4265 | 2.1810 |
2 | 0.2945 | 3.8510 |
3 | 0.4031 | 4.2800 |
4 | 0.4923 | 3.8650 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, X.; Huang, X.; Liu, H.; Mai, Q. Adaptive Fuzzy Event-Triggered Cooperative Control for Multi-Robot Systems: A Predefined-Time Strategy. Sensors 2023, 23, 7950. https://doi.org/10.3390/s23187950
Tian X, Huang X, Liu H, Mai Q. Adaptive Fuzzy Event-Triggered Cooperative Control for Multi-Robot Systems: A Predefined-Time Strategy. Sensors. 2023; 23(18):7950. https://doi.org/10.3390/s23187950
Chicago/Turabian StyleTian, Xuehong, Xin Huang, Haitao Liu, and Qingqun Mai. 2023. "Adaptive Fuzzy Event-Triggered Cooperative Control for Multi-Robot Systems: A Predefined-Time Strategy" Sensors 23, no. 18: 7950. https://doi.org/10.3390/s23187950
APA StyleTian, X., Huang, X., Liu, H., & Mai, Q. (2023). Adaptive Fuzzy Event-Triggered Cooperative Control for Multi-Robot Systems: A Predefined-Time Strategy. Sensors, 23(18), 7950. https://doi.org/10.3390/s23187950