A Survey of Deep Learning-Based Low-Light Image Enhancement
<p>Examples of images under suboptimal lighting conditions.</p> "> Figure 2
<p>Flow chart of CNN method combined with physical model.</p> "> Figure 3
<p>Flow chart of CNN method for non-physical model.</p> "> Figure 4
<p>Flow chart of GAN-based method.</p> "> Figure 5
<p>Example of a partial low-light dataset.</p> "> Figure 6
<p>Example of paired low-light dataset for LOL. Here, (<b>a</b>) is a reference image, and (<b>b</b>) is a low light image.</p> "> Figure 7
<p>Qualitative comparison of different low-light image enhancement algorithms. Where, (<b>a</b>) represents the original image, (<b>b</b>) represents the result map after processing by the CERL [<a href="#B78-sensors-23-07763" class="html-bibr">78</a>] method, (<b>c</b>) represents the result map after processing by the Zero-DCE [<a href="#B39-sensors-23-07763" class="html-bibr">39</a>] method, (<b>d</b>) represents the result map after processing by the Zero-DCE++ [<a href="#B45-sensors-23-07763" class="html-bibr">45</a>] method, (<b>e</b>) represents the result map after processing by the SCI-difficult [<a href="#B49-sensors-23-07763" class="html-bibr">49</a>] method, (<b>f</b>) represents the result map after processing by the SCI-easy [<a href="#B49-sensors-23-07763" class="html-bibr">49</a>] method, and (<b>g</b>) represents the results of the SCI-medium [<a href="#B49-sensors-23-07763" class="html-bibr">49</a>] method.</p> ">
Abstract
:1. Introduction
2. Low-Light Image Enhancement Method Based on Deep Learning
2.1. CNN-Based Methods
2.1.1. Physical Model-Based Methods
2.1.2. Non-Physical Model-Based Methods
2.2. GAN-Based Methods
2.2.1. Condition-Based Methods
2.2.2. Circular Consistency-Based Methods
3. Low-Light Image Quality Evaluation
3.1. Full-Reference Metrics
3.2. Non-Reference Metrics
4. Benchmark Dataset
- (1)
- NPE dataset
- (2)
- MEF dataset
- (3)
- VV dataset
- (4)
- SID dataset
- (5)
- LOL dataset
- (6)
- SICE dataset
- (7)
- ExDark dataset
- (8)
- RELLISUR dataset
- (9)
- LLIV-Phone dataset
5. Experimental Evaluation and Analysis
5.1. Performance Comparison
5.2. Qualitative Evaluation
5.3. Quantitative Evaluation
6. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Zhuang, P.; Sun, H.-H.; Li, G.; Kwong, S.; Li, C. Underwater Image Enhancement via Minimal Color Loss and Locally Adaptive Contrast Enhancement. IEEE Trans. Image Process. 2022, 31, 3997–4010. [Google Scholar] [CrossRef]
- Zhang, Q.; Yuan, Q.; Song, M.; Yu, H.; Zhang, L. Cooperated Spectral Low-Rankness Prior and Deep Spatial Prior for HSI Unsupervised Denoising. IEEE Trans. Image Process. 2022, 31, 6356–6368. [Google Scholar]
- Liu, Y.; Yan, Z.; Ye, T.; Wu, A.; Li, Y. Single Nighttime Image Dehazing Based on Unified Variational Decomposition Model and Multi-Scale Contrast Enhancement. Eng. Appl. Artif. Intell. 2022, 116, 105373. [Google Scholar]
- Sun, H.-H.; Lee, Y.H.; Dai, Q.; Li, C.; Ow, G.; Yusof, M.L.M.; Yucel, A.C. Estimating Parameters of the Tree Root in Heterogeneous Soil Environments via Mask-Guided Multi-Polarimetric Integration Neural Network. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–16. [Google Scholar] [CrossRef]
- Xiong, J.; Liu, G.; Liu, Y.; Liu, M. Oracle Bone Inscriptions Information Processing Based on Multi-Modal Knowledge Graph. Comput. Electr. Eng. 2021, 92, 107173. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, L.; Xu, W. Retinex-Inspired Color Correction and Detail Preserved Fusion for Underwater Image Enhancement. Comput. Electron. Agric. 2022, 192, 106585. [Google Scholar]
- Sun, H.-H.; Cheng, W.; Fan, Z. Learning to Remove Clutter in Real-World GPR Images Using Hybrid Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar]
- Liu, Y.; Yan, Z.; Wu, A.; Ye, T.; Li, Y. Nighttime Image Dehazing Based on Variational Decomposition Model. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 640–649. [Google Scholar]
- Zhang, W.; Li, Z.; Sun, H.-H.; Zhang, Q.; Zhuang, P.; Li, C. SSTNet: Spatial, Spectral, and Texture Aware Attention Network Using Hyperspectral Image for Corn Variety Identification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar]
- Zhou, J.; Li, B.; Zhang, D.; Yuan, J.; Zhang, W.; Cai, Z.; Shi, J. UGIF-Net: An Efficient Fully Guided Information Flow Network for Underwater Image Enhancement. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4206117. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, S.; Zhuang, P.; Liang, Z.; Li, C. Underwater Image Enhancement via Piecewise Color Correction and Dual Prior Optimized Contrast Enhancement. IEEE Signal Process. Lett. 2023, 30, 229–233. [Google Scholar] [CrossRef]
- Pan, X.; Cheng, J.; Hou, F.; Lan, R.; Lu, C.; Li, L.; Feng, Z.; Wang, H.; Liang, C.; Liu, Z. SMILE: Cost-Sensitive Multi-Task Learning for Nuclear Segmentation and Classification with Imbalanced Annotations. Med. Image Anal. 2023, 116, 102867. [Google Scholar]
- Liu, Y.; Teng, Q.; He, X.; Ren, C.; Chen, H. Multimodal Sensors Image Fusion for Higher Resolution Remote Sensing Pan Sharpening. IEEE Sens. J. 2022, 22, 18021–18034. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, L.; Zhuang, P.; Li, G.; Pan, X.; Zhao, W.; Li, C. Underwater Image Enhancement via Weighted Wavelet Visual Perception Fusion. IEEE Trans. Circuits Syst. Video Technol. 2023. [Google Scholar] [CrossRef]
- Zhou, S.; Li, C.; Change Loy, C. Lednet: Joint Low-Light Enhancement and Deblurring in the Dark. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 573–589. [Google Scholar]
- Chen, H.; He, X.; Yang, H.; Wu, Y.; Qing, L.; Sheriff, R.E. Self-Supervised Cycle-Consistent Learning for Scale-Arbitrary Real-World Single Image Super-Resolution. Expert Syst. Appl. 2023, 212, 118657. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, A.; Zhou, H.; Jia, P. Single Nighttime Image Dehazing Based on Image Decomposition. Signal Process. 2021, 183, 107986. [Google Scholar] [CrossRef]
- Yue, H.; Guo, J.; Yin, X.; Zhang, Y.; Zheng, S.; Zhang, Z.; Li, C. Salient Object Detection in Low-Light Images via Functional Optimization-Inspired Feature Polishing. Knowl.-Based Syst. 2022, 257, 109938. [Google Scholar] [CrossRef]
- Zhuang, P.; Wu, J.; Porikli, F.; Li, C. Underwater Image Enhancement With Hyper-Laplacian Reflectance Priors. IEEE Trans. Image Process. 2022, 31, 5442–5455. [Google Scholar]
- Liu, Y.; Yan, Z.; Tan, J.; Li, Y. Multi-Purpose Oriented Single Nighttime Image Haze Removal Based on Unified Variational Retinex Model. IEEE Trans. Circuits Syst. Video Technol. 2022, 33, 1643–1657. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Li, C. Underwater Image Enhancement by Attenuated Color Channel Correction and Detail Preserved Contrast Enhancement. IEEE J. Ocean. Eng. 2022, 47, 718–735. [Google Scholar] [CrossRef]
- He, J.; He, X.; Zhang, M.; Xiong, S.; Chen, H. Deep Dual-Domain Semi-Blind Network for Compressed Image Quality Enhancement. Knowl.-Based Syst. 2022, 238, 107870. [Google Scholar]
- Liu, Q.; He, X.; Teng, Q.; Qing, L.; Chen, H. BDNet: A BERT-Based Dual-Path Network for Text-to-Image Cross-Modal Person Re-Identification. Pattern Recognit. 2023, 141, 109636. [Google Scholar] [CrossRef]
- Huang, S.-C.; Cheng, F.-C.; Chiu, Y.-S. Efficient Contrast Enhancement Using Adaptive Gamma Correction with Weighting Distribution. IEEE Trans. Image Process. 2012, 22, 1032–1041. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Fu, X.; Zhang, X.-P.; Ding, X. A Fusion-Based Method for Single Backlit Image Enhancement. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 4077–4081. [Google Scholar]
- Li, M.; Liu, J.; Yang, W.; Sun, X.; Guo, Z. Structure-Revealing Low-Light Image Enhancement via Robust Retinex Model. IEEE Trans. Image Process. 2018, 27, 2828–2841. [Google Scholar] [CrossRef] [PubMed]
- Fu, G.; Duan, L.; Xiao, C. A Hybrid L2−Lp Variational Model for Single Low-Light Image Enhancement with Bright Channel Prior. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 1925–1929. [Google Scholar]
- Ren, X.; Yang, W.; Cheng, W.-H.; Liu, J. LR3M: Robust Low-Light Enhancement via Low-Rank Regularized Retinex Model. IEEE Trans. Image Process. 2020, 29, 5862–5876. [Google Scholar] [CrossRef]
- Ueda, Y.; Moriyama, D.; Koga, T.; Suetake, N. Histogram specification-based image enhancement for backlit image. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28 October 2020; pp. 958–962. [Google Scholar] [CrossRef]
- Lore, K.G.; Akintayo, A.; Sarkar, S. LLNet: A Deep Autoencoder Approach to Natural Low-Light Image Enhancement. Pattern Recognit. 2017, 61, 650–662. [Google Scholar] [CrossRef]
- Li, C.; Guo, J.; Porikli, F.; Pang, Y. LightenNet: A Convolutional Neural Network for Weakly Illuminated Image Enhancement. Pattern Recognit. Lett. 2018, 104, 15–22. [Google Scholar] [CrossRef]
- Wei, C.; Wang, W.; Yang, W.; Liu, J. Deep Retinex Decomposition for Low-Light Enhancement. arXiv 2018, arXiv:1808.04560. [Google Scholar]
- Lv, F.; Lu, F.; Wu, J.; Lim, C. MBLLEN: Low-Light Image/Video Enhancement Using CNNs; BMVC: Newcastle, UK, 2018; Volume 220, p. 4. [Google Scholar]
- Cai, J.; Gu, S.; Zhang, L. Learning a Deep Single Image Contrast Enhancer from Multi-Exposure Images. IEEE Trans. Image Process. 2018, 27, 2049–2062. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Guo, X. Kindling the Darkness: A Practical Low-Light Image Enhancer. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 1632–1640. [Google Scholar]
- Jiang, Y.; Gong, X.; Liu, D.; Cheng, Y.; Fang, C.; Shen, X.; Yang, J.; Zhou, P.; Wang, Z. Enlightengan: Deep Light Enhancement without Paired Supervision. IEEE Trans. Image Process. 2021, 31, 2340–2349. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Liu, X.; Shen, Y.; Zhang, S.; Zhao, S. Zero-Shot Restoration of Back-Lit Images Using Deep Internal Learning. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 1623–1631. [Google Scholar]
- Wang, R.; Zhang, Q.; Fu, C.-W.; Shen, X.; Zheng, W.-S.; Jia, J. Underexposed Photo Enhancement Using Deep Illumination Estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 6849–6857. [Google Scholar]
- Guo, C.; Li, C.; Guo, J.; Loy, C.C.; Hou, J.; Kwong, S.; Cong, R. Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1780–1789. [Google Scholar]
- Yang, W.; Wang, S.; Fang, Y.; Wang, Y.; Liu, J. From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 3063–3072. [Google Scholar]
- Zhu, M.; Pan, P.; Chen, W.; Yang, Y. Eemefn: Low-Light Image Enhancement via Edge-Enhanced Multi-Exposure Fusion Network. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 13106–13113. [Google Scholar]
- Lu, K.; Zhang, L. TBEFN: A Two-Branch Exposure-Fusion Network for Low-Light Image Enhancement. IEEE Trans. Multimed. 2020, 23, 4093–4105. [Google Scholar] [CrossRef]
- Lim, S.; Kim, W. DSLR: Deep Stacked Laplacian Restorer for Low-Light Image Enhancement. IEEE Trans. Multimed. 2020, 23, 4272–4284. [Google Scholar] [CrossRef]
- Liu, R.; Ma, L.; Zhang, J.; Fan, X.; Luo, Z. Retinex-Inspired Unrolling with Cooperative Prior Architecture Search for Low-Light Image Enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 10561–10570. [Google Scholar]
- Li, C.; Guo, C.; Chen, C.L. Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 4225–4238. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Wang, S.; Fang, Y.; Wang, Y.; Liu, J. Band Representation-Based Semi-Supervised Low-Light Image Enhancement: Bridging the Gap between Signal Fidelity and Perceptual Quality. IEEE Trans. Image Process. 2021, 30, 3461–3473. [Google Scholar] [CrossRef]
- Zhao, Z.; Xiong, B.; Wang, L.; Ou, Q.; Yu, L.; Kuang, F. RetinexDIP: A Unified Deep Framework for Low-Light Image Enhancement. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 1076–1088. [Google Scholar] [CrossRef]
- Li, J.; Feng, X.; Hua, Z. Low-Light Image Enhancement via Progressive-Recursive Network. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 4227–4240. [Google Scholar] [CrossRef]
- Ma, L.; Ma, T.; Liu, R.; Fan, X.; Luo, Z. Toward Fast, Flexible, and Robust Low-Light Image Enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5637–5646. [Google Scholar]
- Huang, H.; Yang, W.; Hu, Y.; Liu, J.; Duan, L.-Y. Towards Low Light Enhancement with Raw Images. IEEE Trans. Image Process. 2022, 31, 1391–1405. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Cui, Z.; Wu, G.; Zhuang, Y.; Qian, Y. Linear Array Network for Low-Light Image Enhancement. arXiv 2022, arXiv:2201.08996. [Google Scholar]
- Panagiotou, S.; Bosman, A.S. Denoising Diffusion Post-Processing for Low-Light Image Enhancement. arXiv 2023, arXiv:2303.09627. [Google Scholar]
- Zhang, Y.; Di, X.; Wu, J.; FU, R.; Li, Y.; Wang, Y.; Xu, Y.; YANG, G.; Wang, C. A Fast and Lightweight Network for Low-Light Image Enhancement. arXiv 2023, arXiv:2304.02978. [Google Scholar]
- Yang, S.; Ding, M.; Wu, Y.; Li, Z.; Zhang, J. Implicit Neural Representation for Cooperative Low-Light Image Enhancement. arXiv 2023, arXiv:2303.11722. [Google Scholar]
- Wu, Y.; Pan, C.; Wang, G.; Yang, Y.; Wei, J.; Li, C.; Shen, H.T. Learning Semantic-Aware Knowledge Guidance for Low-Light Image Enhancement. arXiv 2023, arXiv:2304.07039. [Google Scholar]
- Ren, W.; Liu, S.; Ma, L.; Xu, Q.; Xu, X.; Cao, X.; Du, J.; Yang, M.-H. Low-Light Image Enhancement via a Deep Hybrid Network. IEEE Trans. Image Process. 2019, 28, 4364–4375. [Google Scholar] [CrossRef]
- Tao, L.; Zhu, C.; Xiang, G.; Li, Y.; Jia, H.; Xie, X. LLCNN: A Convolutional Neural Network for Low-Light Image Enhancement. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), IEEE, St. Petersburg, FL, USA, 10–13 December 2017; pp. 1–4. [Google Scholar]
- Xu, K.; Yang, X.; Yin, B.; Lau, R.W. Learning to Restore Low-Light Images via Decomposition-and-Enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2281–2290. [Google Scholar]
- Gharbi, M.; Chen, J.; Barron, J.T.; Hasinoff, S.W.; Durand, F. Deep Bilateral Learning for Real-Time Image Enhancement. ACM Trans. Graph. (TOG) 2017, 36, 1–12. [Google Scholar] [CrossRef]
- Shen, L.; Yue, Z.; Feng, F.; Chen, Q.; Liu, S.; Ma, J. Msr-Net: Low-Light Image Enhancement Using Deep Convolutional Network. arXiv 2017, arXiv:1711.02488. [Google Scholar]
- Wu, H.; Zheng, S.; Zhang, J.; Huang, K. Fast End-to-End Trainable Guided Filter. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1838–1847. [Google Scholar]
- Wei, K.; Fu, Y.; Huang, H. 3-D Quasi-Recurrent Neural Network for Hyperspectral Image Denoising. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 363–375. [Google Scholar] [CrossRef]
- Meng, Y.; Kong, D.; Zhu, Z.; Zhao, Y. From Night to Day: GANs Based Low Quality Image Enhancement. Neural Process. Lett. 2019, 50, 799–814. [Google Scholar] [CrossRef]
- Ignatov, A.; Kobyshev, N.; Timofte, R.; Vanhoey, K.; Van Gool, L. Dslr-Quality Photos on Mobile Devices with Deep Convolutional Networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3277–3285. [Google Scholar]
- Ignatov, A.; Kobyshev, N.; Timofte, R.; Vanhoey, K.; Van Gool, L. Wespe: Weakly Supervised Photo Enhancer for Digital Cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–23 June 2018; pp. 691–700. [Google Scholar]
- Chen, Y.-S.; Wang, Y.-C.; Kao, M.-H.; Chuang, Y.-Y. Deep Photo Enhancer: Unpaired Learning for Image Enhancement from Photographs with Gans. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6306–6314. [Google Scholar]
- Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Fu, Y.; Hong, Y.; Chen, L.; You, S. LE-GAN: Unsupervised Low-Light Image Enhancement Network Using Attention Module and Identity Invariant Loss. Knowl.-Based Syst. 2022, 240, 108010. [Google Scholar] [CrossRef]
- Yan, L.; Fu, J.; Wang, C.; Ye, Z.; Chen, H.; Ling, H. Enhanced Network Optimized Generative Adversarial Network for Image Enhancement. Multimed. Tools Appl. 2021, 80, 14363–14381. [Google Scholar] [CrossRef]
- You, Q.; Wan, C.; Sun, J.; Shen, J.; Ye, H.; Yu, Q. Fundus Image Enhancement Method Based on CycleGAN. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, Berlin, Germany, 23–27 July 2019; pp. 4500–4503. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, J.; Hu, H.-M.; Li, B. Naturalness Preserved Enhancement Algorithm for Non-Uniform Illumination Images. IEEE Trans. Image Process. 2013, 22, 3538–3548. [Google Scholar] [CrossRef]
- Ma, K.; Zeng, K.; Wang, Z. Perceptual Quality Assessment for Multi-Exposure Image Fusion. IEEE Trans. Image Process. 2015, 24, 3345–3356. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, Q.; Xu, J.; Koltun, V. Learning to See in the Dark. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3291–3300. [Google Scholar]
- Loh, Y.P.; Chan, C.S. Getting to Know Low-Light Images with the Exclusively Dark Dataset. Comput. Vis. Image Underst. 2019, 178, 30–42. [Google Scholar] [CrossRef]
- Aakerberg, A.; Nasrollahi, K.; Moeslund, T.B. RELLISUR: A Real Low-Light Image Super-Resolution Dataset. In Proceedings of the Thirty-fifth Conference on Neural Information Processing Systems-NeurIPS 2021, Online, 6–14 December 2021. [Google Scholar]
- Li, C.; Guo, C.; Han, L.; Jiang, J.; Cheng, M.-M.; Gu, J.; Loy, C.C. Low-Light Image and Video Enhancement Using Deep Learning: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 9396–9416. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Jiang, Y.; Liu, D.; Wang, Z. CERL: A Unified Optimization Framework for Light Enhancement With Realistic Noise. IEEE Trans. Image Process. 2022, 31, 4162–4172. [Google Scholar] [CrossRef]
Year | Methods | Network Structure | Training Data | Test Data | Evaluation Metric | Platform |
---|---|---|---|---|---|---|
2017 | LLNet [30] | SSDA | Simulated by gamma correction and Gaussian noise | Simulated self-selected | PSNR SSIM | Theano |
2018 | LightenNet [31] | Four layers | Simulated by random illumination values | Simulated self-selected | PSNR MAE SSIM user study | Caffe MATLAB |
Retinex-Net [32] | Multi-scale network | LOL simulated by adjusting histogram | Self-selected | - | TensorFlow | |
MBLLEN [33] | Multi-branch fusion | Simulated by gamma correction and Poisson noise | Simulated self-selected | PSNR SSIM AB VIF LOE TOMI | TensorFlow | |
SICE [34] | Frequency decomposition | SICE | SICE | PSNR FSIM runtime FLOPs | Caffe MATLAB | |
2019 | KinD [35] | Three subnetworks U-Net | LOL | LOL LIME NPE MEF | PSNR SSIM LOE NIQE | TensorFlow |
EnlightenGAN [36] | U-Net-like network | Unpaired real images | NPE LIME MEF DICM VV BBD-100K ExDARK | User study NIQE classification | PyTorch | |
ExCNet [37] | Fully connected layers | Real images | IEpxD | User study CDIQA LOD | PyTorch | |
DeepUPE [38] | Illumination map | Retouched image pairs | MIT-Adobe FiveK | PSNR SSIM user study | TensorFlow | |
2020 | Zero-DCE [39] | U-Net-like network | SICE | SICE NPE LIME MEF DICM VV DARK FACE | User study PI PNSR SSIM MAE runtime face detection | PyTorch |
DRBN [40] | Recursive network | LOL images selected by MOS | LOL | PSNR SSIM SSIM-GC | PyTorch | |
EEMEFN [41] | U-Net-like network edge detection network | SID | SID | PSNR SSIM | TensorFlow Paddle | |
TBEFN [42] | Three stages U-Net-like network | SCIE LOL | SCIE LOL DICM MEF NPE VV | PSNR SSIM NIQE runtime P FLOPs | TensorFlow | |
DSLR [43] | Laplacian pyramid U-Net-like network | MIT-Adobe FiveK | MIT-Adobe FiveK self-selected | PSNR SSIM NIQMC NIQE BTMQI CaHDC | PyTorch | |
2021 | RUAS [44] | Neural architecture search | LOL MIT-Adobe FiveK | LOL MIT-Adobe FiveK | PSNR SSIM runtime P FLOPs | PyTorch |
Zero-DCE++ [45] | U-Net-like network | SICE | SICE NPE LIME MEF DICM VV DARK FACE | User study PI PNSR SSIM P MAE runtime face detection FLOPs | PyTorch | |
DRBN [46] | Recursive network | LOL | LOL | PSNR SSIM SSIM-GC | PyTorch | |
RetinexDIP [47] | Encoder-decoder networks | - | DICM, ExDark fusion LIME NASA NPE VV | NIQE NIQMC CPCQI | PyTorch | |
PRIEN [48] | Recursive network | MEF LOL simulated by adjusting histogram | LOL LIME NPE MEF VV | PNSR SSIM LOE TMQI | PyTorch | |
2022 | SCI [49] | Self-calibrated illumination network | MIT LOL LSRW DARK FACE | MIT LSRW DARK FACE ACDC | PSNR SSIM DE EME LOE NIQE | PyTorch |
LEDNet [15] | Encoder-decoder networks | LOL-Blur | LOL-Blur | PSNR SSIM MUSIQ NRQM NIQE | PyTorch | |
REENet [50] | Three subnetworks | SID | SID | PSNR SSIM VIF NIQE LPIPS | TensorFlow | |
LANNet [51] | U-Net-like network | LOL SID | LOL SID | PSNR SSIM GMSD NLPD NIQE DISTS | PyTorch | |
2023 | LPDM [52] | Diffusion model | LOL | LIME DICM MEF NPE | SSIM PSNR MAE LPIPS NIQE BRISQUE SPAQ | PyTorch |
FLW-Net [53] | Two-stage network | LOL-V1 LOL-V2 | LOL-V1 LOL-V2 | PSNR SSIM NIQE | PyTorch | |
NeRCo [54] | Encoder-decoder networks | LSRW | LOL LSRW LIME | PSNR SSIM NIQE LOE | PyTorch | |
SKF [55] | Encoder-decoder networks | - | LOL LOL-v2 MEF LIME NPE DICM | PSNR SSIM LPIPS NIQE | PyTorch |
Name | Year | Quantity | Features | Type |
---|---|---|---|---|
NPE | 2013 | 84 | Multi-scene natural images | Real |
MEF | 2015 | 17 | Fusion images | Real |
VV | / | 24 | Uneven local exposure | Real |
SID | 2018 | 5094 | Combination of long and short exposures | Real |
LOL | 2018 | 500 pairs | Paired normal and low-light images | Synthetic + Real |
SCIE | 2019 | 4413 | Large-scale multi-exposure images | Real |
ExDark | 2019 | 7363 | Multi-category, multi-scene | Real |
RELLISUR | 2021 | 12,750 | Different resolutions, pairs | Real |
LLIV-Phone | 2021 | 45,148 | Large scale, image and video | Real |
Metrics | PSNR | |||||
---|---|---|---|---|---|---|
Methods | CERL | Zero-DCE | Zero-DCE++ | SCI-difficult | SCI-easy | SCI-medium |
NPE | 17.932 | 14.509 | 13.963 | 13.989 | 18.892 | 12.185 |
MEF | 17.537 | 11.8 | 11.841 | 11.842 | 18.693 | 10.279 |
VV | 18.006 | 15.606 | 13.984 | 14.016 | 17.459 | 11.481 |
ExDark | 17.188 | 15.468 | 12.62 | 12.633 | 14.35 | 9.898 |
Metrics | SSIM | |||||
---|---|---|---|---|---|---|
Methods | CERL | Zero-DCE | Zero-DCE++ | SCI-difficult | SCI-easy | SCI-medium |
NPE | 0.729 | 0.322 | 0.323 | 0.326 | 0.677 | 0.268 |
MEF | 0.768 | 0.428 | 0.438 | 0.432 | 0.791 | 0.417 |
VV | 0.689 | 0.500 | 0.532 | 0.528 | 0.790 | 0.488 |
ExDark | 0.702 | 0.567 | 0.580 | 0.583 | 0.797 | 0.535 |
Metrics | NIQE | ||||||
---|---|---|---|---|---|---|---|
Methods | Input | CERL | Zero-DCE | Zero-DCE++ | SCI-difficult | SCI-easy | SCI-medium |
NPE | 4.319 | 2.959 | 3.082 | 2.552 | 3.082 | 2.838 | 3.052 |
MEF | 4.265 | 3.760 | 3.156 | 3.434 | 3.963 | 3.261 | 3.201 |
VV | 3.525 | 2.615 | 3.145 | 3.211 | 2.815 | 2.740 | 3.083 |
ExDark | 4.435 | 3.609 | 3.651 | 2.729 | 3.836 | 3.284 | 3.882 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Z.; Qu, P.; Li, J.; Sun, Y.; Li, G.; Liang, Z.; Zhang, W. A Survey of Deep Learning-Based Low-Light Image Enhancement. Sensors 2023, 23, 7763. https://doi.org/10.3390/s23187763
Tian Z, Qu P, Li J, Sun Y, Li G, Liang Z, Zhang W. A Survey of Deep Learning-Based Low-Light Image Enhancement. Sensors. 2023; 23(18):7763. https://doi.org/10.3390/s23187763
Chicago/Turabian StyleTian, Zhen, Peixin Qu, Jielin Li, Yukun Sun, Guohou Li, Zheng Liang, and Weidong Zhang. 2023. "A Survey of Deep Learning-Based Low-Light Image Enhancement" Sensors 23, no. 18: 7763. https://doi.org/10.3390/s23187763
APA StyleTian, Z., Qu, P., Li, J., Sun, Y., Li, G., Liang, Z., & Zhang, W. (2023). A Survey of Deep Learning-Based Low-Light Image Enhancement. Sensors, 23(18), 7763. https://doi.org/10.3390/s23187763