Adaptive Second-Order Fixed-Time Sliding Mode Controller with a Disturbance Observer for Electronic Throttle Valves
<p>The structure of the ETV system.</p> "> Figure 2
<p>The block diagram of the ASOFxTSM controller.</p> "> Figure 3
<p>Tracking Performance in Case 1: (<b>a</b>) tracking curve, (<b>b</b>) control voltage, (<b>c</b>) value of <span class="html-italic">K</span><sub>3</sub>, and (<b>d</b>) disturbance estimation.</p> "> Figure 4
<p>Tracking performance in Case 2: (<b>a</b>) tracking curve, (<b>b</b>) control voltage, (<b>c</b>) value of <span class="html-italic">K</span><sub>3</sub>, and (<b>d</b>) disturbance estimation.</p> "> Figure 5
<p>Tracking Performance in Case 3: (<b>a</b>) tracking curve, (<b>b</b>) control voltage, (<b>c</b>) value of <span class="html-italic">K</span><sub>3</sub>, and (<b>d</b>) disturbance estimation.</p> "> Figure 6
<p>The ETV experimental platform based on RCP.</p> "> Figure 7
<p>Tracking performance: (<b>a</b>) tracking curve in Case 1, (<b>b</b>) control voltage in Case 1, (<b>c</b>) tracking curve in Case 2, (<b>d</b>) control voltage in Case 2, (<b>e</b>) tracking curve in Case 3, and (<b>f</b>) control voltage in Case 3.</p> "> Figure 7 Cont.
<p>Tracking performance: (<b>a</b>) tracking curve in Case 1, (<b>b</b>) control voltage in Case 1, (<b>c</b>) tracking curve in Case 2, (<b>d</b>) control voltage in Case 2, (<b>e</b>) tracking curve in Case 3, and (<b>f</b>) control voltage in Case 3.</p> ">
Abstract
:1. Introduction
2. Modeling of Electric Throttle Valve
3. Controller Design and Stability Analysis
3.1. Fixed-Time Sliding Mode Controller
3.2. Second-Order Fixed-Time Sliding Mode Controller
3.3. Adaptive Second-Order Fixed-Time Sliding Mode Controller
4. Simulation and Experiment Validation
4.1. Simulation Setup
4.2. Simulation Verification
4.2.1. Trajectory Tracking of Steps (Case 1)
4.2.2. Trajectory Tracking of Sinusoidal (Case 2)
4.2.3. Trajectory Tracking of Sawtooth (Case 3)
4.3. Experiment Setup and Verification
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pillai, A.V.; Manojkumar, B. Overview of Drive by Wire Technologies in Automobiles. In AIP Conference Proceedings; AIP Publishing: Long Island, NY, USA, 2022; Volume 2452, p. 030001. [Google Scholar]
- Ashok, B.; Denis Ashok, S.; Ramesh Kumar, C. Trends and Future Perspectives of Electronic Throttle Control System in a Spark Ignition Engine. Annu. Rev. Control. 2017, 44, 97–115. [Google Scholar] [CrossRef]
- Dewi, A.S.; Arifin, Z.; Adiyasa, I.W. Study Case Ratio Gear of Stepper Motor on Electronic Throttle Using PID Control. J. Eng. Appl. Technol. 2021, 2, 36–42. [Google Scholar] [CrossRef]
- Gevorkov, L.; Smidl, V.; Sirovy, M. Stepper Motor Based Model of Electric Drive for Throttle Valve. In DAAAM Proceedings; Katalinic, B., Ed.; DAAAM International Vienna: Wien, Austria, 2018; Volume 1, pp. 1102–1107. ISBN 978-3-902734-20-4. [Google Scholar]
- Grepl, R.; Lee, B. Modeling, Parameter Estimation and Nonlinear Control of Automotive Electronic Throttle Using a Rapid-Control Prototyping Technique. Int. J. Automot. Technol. 2010, 11, 601–610. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, Y. Neural Networks Based Self-Learning PID Control of Electronic Throttle. Nonlinear Dyn. 2009, 55, 385–393. [Google Scholar] [CrossRef]
- Deur, J.; Pavkovic, D.; Peric, N.; Jansz, M.; Hrovat, D. An Electronic Throttle Control Strategy Including Compensation of Friction and Limp-Home Effects. IEEE Trans. Ind. Applicat. 2004, 40, 821–834. [Google Scholar] [CrossRef]
- Thomasson, A.; Eriksson, L. Model-Based Throttle Control Using Static Compensators and Pole Placement. Oil Gas Sci. Technol.–Rev. D’ifp Energ. Nouv. 2011, 66, 717–727. [Google Scholar] [CrossRef]
- Vasak, M.; Baotic, M.; Petrovic, I.; Peric, N. Hybrid Theory-Based Time-Optimal Control of an Electronic Throttle. IEEE Trans. Ind. Electron. 2007, 54, 1483–1494. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, J.J.; Zhu, G.G. LPV Modeling and Mixed Constrained H2/H∞ Control of an Electronic Throttle. IEEE/ASME Trans. Mechatron. 2015, 20, 2120–2132. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, H.; He, S.; Zheng, J.; Ping, Z.; Shao, K.; Cao, Z.; Man, Z. Adaptive Tracking Control of an Electronic Throttle Valve Based on Recursive Terminal Sliding Mode. IEEE Trans. Veh. Technol. 2021, 70, 251–262. [Google Scholar] [CrossRef]
- Jiao, X.; Li, G.; Wang, H. Adaptive Finite Time Servo Control for Automotive Electronic Throttle with Experimental Analysis. Mechatronics 2018, 53, 192–201. [Google Scholar] [CrossRef]
- Wang, D.; Liu, S.; He, Y.; Shen, J. Barrier Lyapunov Function-Based Adaptive Back-Stepping Control for Electronic Throttle Control System. Mathematics 2021, 9, 326. [Google Scholar] [CrossRef]
- Liu, Y.; Li, F.; Sun, B. Self-Tuning Backstepping Control with Kalman-like Filter for High-Precision Control of Automotive Electronic Throttle. Electronics 2023, 12, 2938. [Google Scholar] [CrossRef]
- Hu, Y. Adaptive Full Order Sliding Mode Control for Electronic Throttle Valve System with Fixed Time Convergence Using Extreme Learning Machine. Neural Comput. Appl. 2022, 34, 5241–5253. [Google Scholar] [CrossRef]
- Ozguner, U.; Hong, S.; Pan, Y. Discrete-Time Sliding Mode Control of Electronic Throttle Valve. In Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No. 01CH37228), Orlando, FL, USA, 4–7 December 2001; Volume 2, pp. 1819–1824. [Google Scholar]
- Hu, Y.; Wang, H. Robust Tracking Control for Vehicle Electronic Throttle Using Adaptive Dynamic Sliding Mode and Extended State Observer. Mech. Syst. Signal Process. 2020, 135, 106375. [Google Scholar] [CrossRef]
- Wang, H.; Shi, L.; Man, Z.; Zheng, J.; Li, S.; Kong, H.; Cao, Z. Continuous Fast Nonsingular Terminal Sliding Mode Control of Automotive Electronic Throttle Systems Using Finite-Time Exact Observer. IEEE Trans. Ind. Electron. 2018, 65, 7160–7172. [Google Scholar] [CrossRef]
- Pan, Y.; Ozguner, U.; Dagci, O.H. Variable-Structure Control of Electronic Throttle Valve. IEEE Trans. Ind. Electron. 2008, 55, 3899–3907. [Google Scholar] [CrossRef]
- Humaidi, A.; Hameed, A. Design and Comparative Study of Advanced Adaptive Control Schemes for Position Control of Electronic Throttle Valve. Information 2019, 10, 65. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Jin, X. Adaptive Integral Terminal Sliding Mode Control for Automobile Electronic Throttle via an Uncertainty Observer and Experimental Validation. IEEE Trans. Veh. Technol. 2018, 67, 8129–8143. [Google Scholar] [CrossRef]
- Song, M.; Li, S.; Du, H.; Wang, Z. Chattering-Free Discrete-Time Fast Terminal Sliding Mode Control of Automotive Electronic Throttle with Disturbances. In Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020; pp. 2652–2657. [Google Scholar]
- Li, H.; Cai, Y. Fixed-time Non-singular Terminal Sliding Mode Control with Globally Fast Convergence. IET Control. Theory Appl. 2022, 16, 1227–1241. [Google Scholar] [CrossRef]
- Huang, S.; Wang, J.; Huang, C.; Zhou, L.; Xiong, L.; Liu, J.; Li, P. A Fixed-Time Fractional-Order Sliding Mode Control Strategy for Power Quality Enhancement of PMSG Wind Turbine. Int. J. Electr. Power Energy Syst. 2022, 134, 107354. [Google Scholar] [CrossRef]
- Utkin, V. Discussion Aspects of High-Order Sliding Mode Control. IEEE Trans. Automat. Contr. 2016, 61, 829–833. [Google Scholar] [CrossRef]
- Slotine, J.J.; Sastry, S.S. Tracking Control of Non-Linear Systems Using Sliding Surfaces, with Application to Robot Manipulators†. Int. J. Control 1983, 38, 465–492. [Google Scholar] [CrossRef]
- Trujillo, S.C.; Candelo-Becerra, J.E.; Hoyos, F.E. Numerical Validation of a Boost Converter Controlled by a Quasi-Sliding Mode Control Technique with Bifurcation Diagrams. Symmetry 2022, 14, 694. [Google Scholar] [CrossRef]
- Ma, H.; Wu, J.; Xiong, Z. Discrete-Time Sliding-Mode Control with Improved Quasi-Sliding-Mode Domain. IEEE Trans. Ind. Electron. 2016, 63, 6292–6304. [Google Scholar] [CrossRef]
- Feng, H.; Song, Q.; Ma, S.; Ma, W.; Yin, C.; Cao, D.; Yu, H. A New Adaptive Sliding Mode Controller Based on the RBF Neural Network for an Electro-Hydraulic Servo System. ISA Trans. 2022, 129, 472–484. [Google Scholar] [CrossRef] [PubMed]
- Narayan, J.; Abbas, M.; Dwivedy, S.K. Robust Adaptive Backstepping Control for a Lower-Limb Exoskeleton System with Model Uncertainties and External Disturbances. Automatika 2023, 64, 145–161. [Google Scholar] [CrossRef]
- Ma, C.; He, X.; Xie, B.; Sun, W.; Zhao, D.; Liao, W. Backstepping Sliding Mode Fault-Tolerant Control for the Wind Turbine System with Disturbance Observer. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2022, 236, 1667–1678. [Google Scholar] [CrossRef]
- Levant, A. Sliding Order and Sliding Accuracy in Sliding Mode Control. Int. J. Control 1993, 58, 1247–1263. [Google Scholar] [CrossRef]
- Lochan, K.; Singh, J.P.; Roy, B.K.; Subudhi, B. Adaptive Global Super-Twisting Sliding Mode Control-Based Filter for Trajectory Synchronisation of Two-Link Flexible Manipulators. Int. J. Syst. Sci. 2020, 51, 2410–2428. [Google Scholar] [CrossRef]
- Zhou, B. Multi-Variable Adaptive High-Order Sliding Mode Quasi-Optimal Control with Adjustable Convergence Rate for Unmanned Helicopters Subject to Parametric and External Uncertainties. Nonlinear Dyn. 2022, 108, 3671–3692. [Google Scholar] [CrossRef]
- Wang, B.; Shao, Y.; Yu, Y.; Dong, Q.; Yun, Z.; Xu, D. High-Order Terminal Sliding-Mode Observer for Chattering Suppression and Finite-Time Convergence in Sensorless SPMSM Drives. IEEE Trans. Power Electron. 2021, 36, 11910–11920. [Google Scholar] [CrossRef]
- Hui, J.; Yuan, J. Chattering-Free Higher Order Sliding Mode Controller with a High-Gain Observer for the Load Following of a Pressurized Water Reactor. Energy 2021, 223, 120066. [Google Scholar] [CrossRef]
- Reichhartinger, M.; Golkani, M.A.; Horn, M. Experimental Evaluation of Observer-Based Throttle Valve Control Using Super-Twisting Algorithm. In Proceedings of the 2015 European Control Conference (ECC), Linz, Austria, 15–17 July 2015; pp. 2144–2149. [Google Scholar]
- Long, Y.; Yao, C.; Song, E.-Z. Design and Experimental Analysis of an Adaptive Second-Order Fast Non-Singular Terminal Sliding Mode Controller for Electronic Throttle With Disturbance. IEEE Access 2023, 11, 57854–57866. [Google Scholar] [CrossRef]
- Pavković, D.; Deur, J.; Jansz, M.; Perić, N. Adaptive Control of Automotive Electronic Throttle. Control Eng. Pract. 2006, 14, 121–136. [Google Scholar] [CrossRef]
- Guo, R.; Ding, Y.; Yue, X. Active Adaptive Continuous Nonsingular Terminal Sliding Mode Controller for Hypersonic Vehicle. Aerosp. Sci. Technol. 2023, 137, 108279. [Google Scholar] [CrossRef]
- Shtessel, Y.; Edwards, C.; Fridman, L.; Levant, A. Sliding Mode Control and Observation; Springer: New York, NY, USA, 2014; ISBN 978-0-8176-4892-3. [Google Scholar]
- Ha, Q.P.; Nguyen, Q.H.; Rye, D.C.; Durrant-Whyte, H.F. Fuzzy Sliding-Mode Controllers with Applications. IEEE Trans. Ind. Electron. 2001, 48, 38–46. [Google Scholar] [CrossRef]
- Wu, R.; Wei, C.; Yang, F.; Cui, N.; Zhang, L. FxTDO-based Non-singular Terminal Sliding Mode Control for Second-order Uncertain Systems. IET Control Theory Appl. 2018, 12, 2459–2467. [Google Scholar] [CrossRef]
- Reichhartinger, M.; Horn, M. Application of Higher Order Sliding-Mode Concepts to a Throttle Actuator for Gasoline Engines. IEEE Trans. Ind. Electron. 2009, 56, 3322–3329. [Google Scholar] [CrossRef]
- Levant, A. Principles of 2-Sliding Mode Design. Automatica 2007, 43, 576–586. [Google Scholar] [CrossRef]
Parameters | Unit | Nominal Values |
---|---|---|
Bm | N·m·s/rad | 2.4 × 10−4 |
Kt | N·m/A | 6 × 10−3 |
Km | N·m·s/rad | 5.6 × 10−2 |
Kk | N·m | 2.4 × 10−4 |
Ke | V·s/rad | 5 × 10−6 |
Ks | N·m·s/rad | 1.5 × 10−2 |
R | Ω | 2.8 |
L | H | 9 × 10−4 |
Jm | kg·m2 | 9 × 10−4 |
Jet | kg·m2 | 8 × 10−3 |
θ0 | rad | 1.13 × 10−1 |
N | - | 16 |
Parameters | Nominal Values | Parameters | Nominal Values |
---|---|---|---|
α1, α2, α3 | 10, 40, 10 | k1, k2, k3 | 100, 200, 100 |
γ1, γ2 | 7/5, 5/9 | η1, η2 | 7/5, 5/9 |
β1, β2, β3 | 5, 50, 5 | K3 | 1000 |
ε1, ε2 | 7/5, 5/9 | q | 100 |
Controller | MSE (10−5) | MAE (10−3) | maxE (10−2) | CoEf |
---|---|---|---|---|
FxTSM | 115.981 | 28.497 | 10.483 | 1.5406 |
super-twisting | 14.179 | 5.438 | 6.259 | 0.5746 |
ASOFxTSM | 1.117 | 2.825 | 1.027 | 0.5381 |
Controller | MSE (10−5) | MAE (10−3) | maxE (10−2) | CoEf |
---|---|---|---|---|
FxTSM | 114.085 | 28.483 | 10.846 | 1.4096 |
super-twisting | 17.912 | 7.173 | 8.043 | 0.5550 |
ASOFxTSM | 7.182 | 6.367 | 1.701 | 0.5215 |
Controller | MSE (10−5) | MAE (10−3) | maxE (10−2) | CoEf |
---|---|---|---|---|
FxTSM | 111.866 | 27.957 | 10.44 | 1.5502 |
super-twisting | 20.830 | 6.162 | 6.260 | 0.5830 |
ASOFxTSM | 15.822 | 5.336 | 0.925 | 0.5468 |
Parameters | Nominal Values | Parameters | Nominal Values |
---|---|---|---|
α1, α2, α3 | 5, 15, 5 | k1, k2, k3 | 50, 300, 80 |
γ1, γ2 | 7/5, 5/9 | η1, η2 | 7/5, 5/9 |
β1, β2, β3 | 5, 20, 5 | K3 | 2000 |
ε1, ε2 | 7/5, 5/9 | q | 50 |
Controller | MSE (10−2) | MAE (10−1) | maxE | CoEf |
---|---|---|---|---|
FxTSM | 6.609 | 2.049 | 0.934 | 1.811 |
super-twisting | 4.124 | 1.456 | 0.669 | 0.790 |
ASOFxTSM | 0.635 | 0.624 | 0.292 | 0.723 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Long, Y.; Yao, C.; Song, E. Adaptive Second-Order Fixed-Time Sliding Mode Controller with a Disturbance Observer for Electronic Throttle Valves. Sensors 2023, 23, 7676. https://doi.org/10.3390/s23187676
Feng Y, Long Y, Yao C, Song E. Adaptive Second-Order Fixed-Time Sliding Mode Controller with a Disturbance Observer for Electronic Throttle Valves. Sensors. 2023; 23(18):7676. https://doi.org/10.3390/s23187676
Chicago/Turabian StyleFeng, Yinkai, Yun Long, Chong Yao, and Enzhe Song. 2023. "Adaptive Second-Order Fixed-Time Sliding Mode Controller with a Disturbance Observer for Electronic Throttle Valves" Sensors 23, no. 18: 7676. https://doi.org/10.3390/s23187676