IoT and Ensemble Long-Short-Term-Memory-Based Evapotranspiration Forecasting for Riyadh
<p>Factors affecting evapotranspiration (<span class="html-italic">ET</span>).</p> "> Figure 2
<p>Flowchart of proposed <span class="html-italic">ET</span> forecasting.</p> "> Figure 3
<p>Proposed LoRaWAN-enabled IoT architecture.</p> "> Figure 4
<p>Location of Riyadh, Saudi Arabia on world map.</p> "> Figure 5
<p>Correlation between climatic conditions and <span class="html-italic">ET</span>.</p> "> Figure 6
<p><span class="html-italic">ET</span> distributions in data set.</p> "> Figure 7
<p>Distribution of daily maximum temperature (<span class="html-italic">T</span>) to months.</p> "> Figure 8
<p>Distribution of daily mean humidity (<span class="html-italic">Hm</span>) to months.</p> "> Figure 9
<p>Distribution of daily maximum wind speed (<span class="html-italic">Ws</span>) to months.</p> "> Figure 10
<p>Preprocessing of data.</p> "> Figure 11
<p>Architecture of LSTM.</p> "> Figure 12
<p>Sequence diagram of bagged LSTM.</p> "> Figure 13
<p>Sequence diagram of boosting LSTM.</p> "> Figure 14
<p><span class="html-italic">ET</span> forecasted with different ML models along with actual <span class="html-italic">ET</span> values calculated by PM method in the test data set.</p> "> Figure 15
<p>Difference in <span class="html-italic">ET</span> forecasted with different ML models compared to actual <span class="html-italic">ET</span> calculated using PM method.</p> ">
Abstract
:1. Introduction
- LoRaWAN-enabled IoT architecture to sense meteorological conditions is proposed and implemented to predict accurate ET according to real-time meteorological conditions.
- Off-the-shelf LSTM and bagged and boosted ensemble LSTM ML approaches are implemented and evaluated to forecast the ET values from real-time meteorological data collected through the proposed LoRaWAN-enabled IoT architecture.
- The evaluation of the performance of ensemble LSTM approach and off-the-shelf LSTM ML models for ET forecasting for Riyadh in Saudi Arabia.
2. Materials and Methods
- First, meteorological data (daily maximum temperature (T), mean humidity (Hm), and maximum wind speed (Ws)) were determined from daily sensed temperature, humidity, and wind speed using LoRaWAN-enabled proposed IoT architecture.
- Second, the real-time data are preprocessed by cleaning and normalization to bring all variables to a similar scale.
- From the real-time collected data, the off-the-shelf LSTM and ensemble LSTM-based bagged and boosted ML models are trained.
- Finally, the performance of both ensemble LSTM models for ET forecasting in Riyadh is evaluated.
2.1. Location
2.2. Data Set
2.3. Pre-Processing of Data
- First, the process of handling missing values is performed. The main reasons for these issues are sensor malfunctions or other data collection errors. Such missing values can cause bias in the model’s performance. Mean imputation is applied for the handling of missing values. In this method, the missing values are substituted with the average of the values.
- Second, the outliers are identified and handled from the raw data. Outliers are data values that have a significant deviation from the normal distribution of the variables. In the proposed approach, the sensed data are detected in their respective ranges. Data received out of these ranges is discarded.
- Third, the normalization process is implemented to make all variables of the data set on a similar scale. It is essential for the performance of the proposed model. The variation in different scale variables can cause inaccurate impacts on the model’s performance.
- Finally, the standardization technique is utilized for the normalization of the data that transforms the variables to have zero mean and unit variance.
2.4. Implementation of ML Models
2.4.1. Bagged LSTM
Algorithm 1 Bagged LSTM algorithm for ET forecasting |
|
2.4.2. Boosted LSTM
Algorithm 2 Boosted LSTM algorithm for forecasting. |
|
3. Results
- Coefficient of determination (R);
- Pearson correlation coefficient (r);
- Root mean squared error (RMSE);
- Mean squared error (MSE).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
Bi-LSTM | Bi-Directional Long Short-Term Memory |
c | Psychrometric Constant |
CO | Carbon Dioxide |
DNN | Deep Neural Network |
ELM | Extreme Learning Machine |
ET | Evapotranspiration |
ea | Actual Vapor Pressure |
es | Saturated Vapor Pressure |
FAO | Food and Agriculture Organization |
G | Soil Heat Flux Density |
Hm | Humidity |
IoT | Internet of Things |
KNN | k-Nearest Neighbors |
LoRaWAN | Long-Range Wireless Area Network |
LSTM | Long Short-Term Memory |
MAE | Mean Absolute Error |
ML | Machine Learning |
MSE | Mean Squared Error |
MLP | Multilayer Perceptron |
m | Slope of the Vapor Pressure Curve |
PSO | Particle Swarm Optimization |
PM | Penman–Montieth |
R | Net Radiation at the Crop Surface |
r | Pearson Correlation Coefficient |
R | Coefficient of Determination |
RF | Random Forest |
RMSE | Root Mean Squared Error |
SVM | Support Vector Machine |
SVR | Support Vector Regression |
TCN | Temporal Convolution Neural Network |
T | Daily Maximum Temperature |
Tm | Mean Daily Air Temperature |
Ws | Wind Speed |
References
- Khan, A.A.; Nauman, M.A.; Bashir, R.N.; Jahangir, R.; Alroobaea, R.; Binmahfoudh, A.; Alsafyani, M.; Wechtaisong, C. Context Aware Evapotranspiration (ETs) for Saline Soils Reclamation. IEEE Access 2022, 10, 110050–110063. [Google Scholar] [CrossRef]
- Martin, J.; Saez, J.A.; Corchado, E. On the suitability of stacking-based ensembles in smart agriculture for evapotranspiration prediction. Appl. Soft Comput. 2021, 108, 107509. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Hui-Mean, F.; Yusop, Z.; Yusof, F. Drought analysis and water resource availability using standardised precipitation evapotranspiration index. Atmos. Res. 2018, 201, 102–115. [Google Scholar] [CrossRef]
- Wang, L.; Caylor, K.K.; Villegas, J.C.; Barron-Gafford, G.A.; Breshears, D.D.; Huxman, T.E. Partitioning evapotranspiration across gradients of woody plant cover: Assessment of a stable isotope technique. Geophys. Res. Lett. 2010, 37, L09401. [Google Scholar] [CrossRef]
- Xu, C.Y.; Singh, V. Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions. J. Hydrol. 2005, 308, 105–121. [Google Scholar] [CrossRef]
- Krishnaswamy, J.; Bonell, M.; Venkatesh, B.; Purandara, B.K.; Rakesh, K.; Lele, S.; Kiran, M.; Reddy, V.; Badiger, S. The groundwater recharge response and hydrologic services of tropical humid forest ecosystems to use and reforestation: Support for the “infiltration-evapotranspiration trade-off hypothesis”. J. Hydrol. 2013, 498, 191–209. [Google Scholar] [CrossRef]
- Feng, S.; Liu, J.; Zhang, Q.; Zhang, Y.; Singh, V.P.; Gu, X.; Sun, P. A global quantitation of factors affecting evapotranspiration variability. J. Hydrol. 2020, 584, 124688. [Google Scholar] [CrossRef]
- Gates, D.M.; Hanks, R. Plant factors affecting evapotranspiration. Irrig. Agric. Lands 1967, 11, 506–521. [Google Scholar]
- Ritchie, J.; Johson, B. Soil and plant factors affecting evaporation. Agronomy 1990, 30, 363–390. [Google Scholar]
- Spontoni, T.A.; Ventura, T.M.; Palácios, R.S.; Curado, L.F.A.; Fernandes, W.A.; Capistrano, V.B.; Fritzen, C.L.; Pavão, H.G.; Rodrigues, T.R. Evaluation and Modelling of Reference Evapotranspiration Using Different Machine Learning Techniques for a Brazilian Tropical Savanna. Agronomy 2023, 13, 2056. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Maia, R.F.; Lurbe, C.B.; Hornbuckle, J. Machine learning approach to estimate soil matric potential in the plant root zone based on remote sensing data. Front. Plant Sci. 2022, 13, 2923. [Google Scholar] [CrossRef] [PubMed]
- Bashir, R.N.; Khan, F.A.; Khan, A.A.; Tausif, M.; Abbas, M.Z.; Shahid, M.M.A.; Khan, N. Intelligent optimization of Reference Evapotranspiration (ETo) for precision irrigation. J. Comput. Sci. 2023, 69, 102025. [Google Scholar] [CrossRef]
- Chong, J.L.; Chew, K.W.; Peter, A.P.; Ting, H.Y.; Show, P.L. Internet of Things (IoT)-Based Environmental Monitoring and Control System for Home-Based Mushroom Cultivation. Biosensors 2023, 13, 98. [Google Scholar] [CrossRef] [PubMed]
- Saleh, S.; Cherradi, B.; El Gannour, O.; Gouiza, N.; Bouattane, O. Healthcare monitoring system for automatic database management using mobile application in IoT environment. Bull. Electr. Eng. Inform. 2023, 12, 1055–1068. [Google Scholar] [CrossRef]
- Sitharthan, R.; Vimal, S.; Verma, A.; Karthikeyan, M.; Dhanabalan, S.S.; Prabaharan, N.; Rajesh, M.; Eswaran, T. Smart microgrid with the internet of things for adequate energy management and analysis. Comput. Electr. Eng. 2023, 106, 108556. [Google Scholar] [CrossRef]
- Al Shahrani, A.M.; Alomar, M.A.; Alqahtani, K.N.; Basingab, M.S.; Sharma, B.; Rizwan, A. Machine Learning-Enabled Smart Industrial Automation Systems Using Internet of Things. Sensors 2023, 23, 324. [Google Scholar] [CrossRef]
- Khan, A.A.; Faheem, M.; Bashir, R.N.; Wechtaisong, C.; Abbas, M.Z. Internet of Things (IoT) Assisted Context Aware Fertilizer Recommendation. IEEE Access 2022, 10, 129505–129519. [Google Scholar] [CrossRef]
- Hu, Z.; Bashir, R.N.; Rehman, A.U.; Iqbal, S.I.; Shahid, M.M.A.; Xu, T. Machine Learning Based Prediction of Reference Evapotranspiration (ET 0) Using IoT. IEEE Access 2022, 10, 70526–70540. [Google Scholar] [CrossRef]
- Bashir, R.N.; Bajwa, I.S.; Shahid, M.M.A. Internet of Things and Machine-Learning-Based Leaching Requirements Estimation for Saline Soils. IEEE Internet Things J. 2020, 7, 4464–4472. [Google Scholar] [CrossRef]
- Bashir, R.N.; Bajwa, I.S.; Iqbal, M.W.; Ashraf, M.U.; Alghamdi, A.M.; Bahaddad, A.A.; Almarhabi, K.A. Leaching Fraction (LF) of Irrigation Water for Saline Soils Using Machine Learning. Intell. Autom. Soft Comput. 2023, 36, 1915–1930. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, Y.; Wu, D.; Liu, Z.; Zhang, H.; Zhu, M.; Chen, Z.; Sun, J.; Wang, X. An experimental investigation and machine learning-based prediction for seismic performance of steel tubular column filled with recycled aggregate concrete. Rev. Adv. Mater. Sci. 2022, 61, 849–872. [Google Scholar] [CrossRef]
- Feng, W.; Wang, Y.; Sun, J.; Tang, Y.; Wu, D.; Jiang, Z.; Wang, J.; Wang, X. Prediction of thermo-mechanical properties of rubber-modified recycled aggregate concrete. Constr. Build. Mater. 2022, 318, 125970. [Google Scholar] [CrossRef]
- Ben Abdallah, E.; Grati, R.; Boukadi, K. Towards an explainable irrigation scheduling approach by predicting soil moisture and evapotranspiration via multi-target regression. J. Ambient. Intell. Smart Environ. 2023, 15, 89–110. [Google Scholar] [CrossRef]
- Hilmi, M.Z.B.; Anwar, T.; Rambli, D.R.B.A.; Salma, S.; Ashwitha, A.; Prayogo, P.H.; Rahyadi, I.; La Mani, Y.; Siagian, M.; Melenia, E.A.; et al. Long short-term memory with gated recurrent unit based on hyperparameter settings and hybridization for reference evapotranspiration rate prediction. J. Theor. Appl. Inf. Technol. 2022, 100, 6702–6714. [Google Scholar]
- Nawandar, N.K.; Cheggoju, N.; Satpute, V. ANN-based model to predict reference evapotranspiration for irrigation estimation. In Proceedings of International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications: ICMISC 2020; Springer: Singapore, 2021; pp. 671–679. [Google Scholar]
- Bellido-Jiménez, J.A.; Estévez, J.; García-Marín, A.P. New machine learning approaches to improve reference evapotranspiration estimates using intra-daily temperature-based variables in a semi-arid region of Spain. Agric. Water Manag. 2021, 245, 106558. [Google Scholar] [CrossRef]
- Majumdar, P.; Bhattacharya, D.; Mitra, S. Prediction of evapotranspiration and soil moisture in different rice growth stages through improved salp swarm based feature optimization and ensembled machine learning algorithm. Theor. Appl. Climatol. 2023, 153, 649–673. [Google Scholar] [CrossRef]
- Torres, A.B.; da Rocha, A.R.; da Silva, T.L.C.; de Souza, J.N.; Gondim, R.S. Multilevel data fusion for the internet of things in smart agriculture. Comput. Electron. Agric. 2020, 171, 105309. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, Z.; Jiang, H.; Sun, S. Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods. J. Hydrol. 2020, 591, 125286. [Google Scholar] [CrossRef]
- Jia, W.; Zhang, Y.; Wei, Z.; Zheng, Z.; Xie, P. Daily reference evapotranspiration prediction for irrigation scheduling decisions based on the hybrid PSO-LSTM model. PLoS ONE 2023, 18, e0281478. [Google Scholar] [CrossRef]
- Jung, D.H.; Lee, T.S.; Kim, K.; Park, S.H. A Deep Learning Model to Predict Evapotranspiration and Relative Humidity for Moisture Control in Tomato Greenhouses. Agronomy 2022, 12, 2169. [Google Scholar] [CrossRef]
- Roy, D.K.; Sarkar, T.K.; Kamar, S.S.A.; Goswami, T.; Muktadir, M.A.; Al-Ghobari, H.M.; Alataway, A.; Dewidar, A.Z.; El-Shafei, A.A.; Mattar, M.A. Daily Prediction and Multi-Step Forward Forecasting of Reference Evapotranspiration Using LSTM and Bi-LSTM Models. Agronomy 2022, 12, 594. [Google Scholar] [CrossRef]
- Yin, J.; Deng, Z.; Ines, A.V.M.; Wu, J.; Rasu, E. Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM). Agric. Water Manag. 2020, 242, 106386. [Google Scholar] [CrossRef]
- Wang, T.; Wang, X.; Jiang, Y.; Sun, Z.; Liang, Y.; Hu, X.; Li, H.; Shi, Y.; Xu, J.; Ruan, J. Hybrid machine learning approach for evapotranspiration estimation of fruit tree in agricultural cyber-physical systems. IEEE Trans. Cybern. 2022, 53, 5677–5691. [Google Scholar] [CrossRef] [PubMed]
ML Model | R | r | MSE | RMSE |
---|---|---|---|---|
Bagged LSTM | 0.94 | 0.97 | 0.42 | 0.53 |
Boosted | 0.91 | 0.95 | 0.63 | 0.63 |
LSTM | 0.77 | 0.87 | 1.77 | 1.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nauman, M.A.; Saeed, M.; Saidani, O.; Javed, T.; Almuqren, L.; Bashir, R.N.; Jahangir, R. IoT and Ensemble Long-Short-Term-Memory-Based Evapotranspiration Forecasting for Riyadh. Sensors 2023, 23, 7583. https://doi.org/10.3390/s23177583
Nauman MA, Saeed M, Saidani O, Javed T, Almuqren L, Bashir RN, Jahangir R. IoT and Ensemble Long-Short-Term-Memory-Based Evapotranspiration Forecasting for Riyadh. Sensors. 2023; 23(17):7583. https://doi.org/10.3390/s23177583
Chicago/Turabian StyleNauman, Muhammad Asif, Mahlaqa Saeed, Oumaima Saidani, Tayyaba Javed, Latifah Almuqren, Rab Nawaz Bashir, and Rashid Jahangir. 2023. "IoT and Ensemble Long-Short-Term-Memory-Based Evapotranspiration Forecasting for Riyadh" Sensors 23, no. 17: 7583. https://doi.org/10.3390/s23177583
APA StyleNauman, M. A., Saeed, M., Saidani, O., Javed, T., Almuqren, L., Bashir, R. N., & Jahangir, R. (2023). IoT and Ensemble Long-Short-Term-Memory-Based Evapotranspiration Forecasting for Riyadh. Sensors, 23(17), 7583. https://doi.org/10.3390/s23177583