Children’s Pain Identification Based on Skin Potential Signal
<p>The sex and age information of the participants.</p> "> Figure 2
<p>The time-domain plot and Fourier transform results of typical SP signal.</p> "> Figure 3
<p>Pain experiment.</p> "> Figure 4
<p>Four typical samples of pain and silent states.</p> "> Figure 5
<p>Pain identification results of children of different ages.</p> ">
Abstract
:1. Introduction
1.1. Background
1.2. Related Works
2. Materials and Methods
2.1. Participants
2.2. SP Characteristics of Pain
2.3. Experiment
2.4. Preprocessing
2.4.1. Data Cleaning
2.4.2. Normalization
2.4.3. Data Slice
- During the blood collection operations, we found that the period was between 15 and 25 s. Therefore, the length of the data slices was set to 15 s uniformly.
- The silent time was more than 30 s, and the silent slice was discarded if there were less than 30 s of experimental data.
- The starting point of silent samples was calculated from the 10th second after wearing the device. We could exclude the effect of SP signal instability when the device was first put on.
- If the blood collection operation time was more than 15 s, the starting point of the pain sample started from the moment of recording the needle ligation. Otherwise, we discarded the pain sample slice and kept the silent sample slice before the operation.
2.5. Pain Feature Extraction
2.6. Datasets
2.7. Algorithm
3. Results
3.1. Accuracy of Pain Identifying
3.2. Effect of Sex and Age on Pain Identification
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Werner, P.; Lopez-Martinez, D.; Walter, S.; Al-Hamadi, A.; Gruss, S.; Picard, R.W. Automatic Recognition Methods Supporting Pain Assessment: A Survey. IEEE Trans. Affect. Comput. 2022, 13, 530–552. [Google Scholar] [CrossRef]
- Aydede, M. Defending the IASP Definition of Pain. Monist 2017, 100, 439–464. [Google Scholar] [CrossRef] [Green Version]
- Loizzo, A.; Loizzo, S.; Capasso, A. Neurobiology of Pain in Children: An Overview. Open Biochem. J. 2009, 3, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Dunwoody, C.J.; Krenzischek, D.A.; Pasero, C.; Rathmell, J.P.; Polomano, R.C. Assessment, Physiological Monitoring, and Consequences of Inadequately Treated Acute Pain. Pain. Manag. Nurs. 2008, 9, 11–21. [Google Scholar] [CrossRef]
- Herr, K.; Coyne, P.J.; Ely, E.; Gélinas, C.; Manworren, R.C.B. Pain Assessment in the Patient Unable to Self-Report: Clinical Practice Recommendations in Support of the ASPMN 2019 Position Statement. Pain Manag. Nurs. 2019, 20, 404–417. [Google Scholar] [CrossRef]
- Garra, G.; Singer, A.J.; Taira, B.R.; Chohan, J.; Cardoz, H.; Chisena, E.; Thode, H.C., Jr. Validation of the Wong-Baker FACES Pain Rating Scale in Pediatric Emergency Department Patients. Acad. Emerg. Med. 2010, 17, 50–54. [Google Scholar] [CrossRef]
- Zamzmi, G.; Kasturi, R.; Goldgof, D.; Zhi, R.; Ashmeade, T.; Sun, Y. A Review of Automated Pain Assessment in Infants: Features, Classification Tasks, and Databases. IEEE Rev. Biomed. Eng. 2018, 11, 77–96. [Google Scholar] [CrossRef]
- de Melo, G.M.; Lélis, A.L.P.D.A.; de Moura, A.F.; Cardoso, M.V.L.M.L.; da Silva, V.M. Pain assessment scales in newborns: Integrative review. Rev. Paul. De Pediatr. 2014, 32, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, L.G.; Fraga, M.V.; Malavolta, C.P. Assessment of Pain in the Newborn. Clin. Perinatol. 2019, 46, 693–707. [Google Scholar] [CrossRef]
- Aung, M.S.H.; Kaltwang, S.; Romera-Paredes, B.; Martinez, B.; Singh, A.; Cella, M.; Valstar, M.; Meng, H.; Kemp, A.; Shafizadeh, M.; et al. The Automatic Detection of Chronic Pain-Related Expression: Requirements, Challenges and the Multimodal EmoPain Dataset. IEEE Trans. Affect. Comput. 2016, 7, 435–451. [Google Scholar] [CrossRef] [Green Version]
- Martinez, B.; Valstar, M.F. Advances, Challenges, and Opportunities in Automatic Facial Expression Recognition. In Advances in Face Detection and Facial Image Analysis; Springer International Publishing: Cham, Switzerland, 2016; pp. 63–100. [Google Scholar] [CrossRef]
- Rodriguez, P.; Cucurull, G.; Gonzalez, J.; Gonfaus, J.M.; Nasrollahi, K.; Moeslund, T.B.; Roca, F.X. Deep Pain: Exploiting Long Short-Term Memory Networks for Facial Expression Classification. IEEE Trans. Cybern. 2022, 52, 3314–3324. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.C.D.C. Facial expression of pain: An evolutionary account. Behav. Brain Sci. 2002, 25, 439–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Martinez, D.; Picard, R. Multi-task neural networks for personalized pain recognition from physiological signals. In Proceedings of the 2017 Seventh International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), San Antonio, TX, USA, 23–26 October 2017; pp. 181–184. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; Posada-Quintero, H.F.; Chon, K.H. Real-Time High-Level Acute Pain Detection Using a Smartphone and a Wrist-Worn Electrodermal Activity Sensor. Sensors 2021, 21, 3956. [Google Scholar] [CrossRef]
- Treister, R.; Kliger, M.; Zuckerman, G.; Aryeh, I.G.; Eisenberg, E. Differentiating between heat pain intensities: The combined effect of multiple autonomic parameters. Pain 2012, 153, 1807–1814. [Google Scholar] [CrossRef]
- Ben-Israel, N.; Kliger, M.; Zuckerman, G.; Katz, Y.; Edry, R. Monitoring the nociception level: A multi-parameter approach. J. Clin. Monit. Comput. 2013, 27, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Schulz, E.; Zherdin, A.; Tiemann, L.; Plant, C.; Ploner, M. Decoding an Individual’s Sensitivity to Pain from the Multivariate Analysis of EEG Data. Cereb. Cortex 2012, 22, 1118–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, H.; Kim, B.; Noh, G.-J.; Yoo, S. A Deep Neural Network-Based Pain Classifier Using a Photoplethysmography Signal. Sensors 2019, 19, 384. [Google Scholar] [CrossRef] [Green Version]
- Krauss, B.S.; Calligaris, L.; Green, S.M.; Barbi, E. Current concepts in management of pain in children in the emergency department. Lancet 2016, 387, 83–92. [Google Scholar] [CrossRef]
- Brown, S.; Timmins, F. An exploration of nurses’ knowledge of, and attitudes towards, pain recognition and management in neonates. J. Neonatal Nurs. 2005, 11, 65–71. [Google Scholar] [CrossRef]
- Rinella, S.; Massimino, S.; Fallica, P.G.; Giacobbe, A.; Donato, N.; Coco, M.; Neri, G.; Parenti, R.; Perciavalle, V.; Conoci, S. Emotion Recognition: Photoplethysmography and Electrocardiography in Comparison. Biosensors 2022, 12, 811. [Google Scholar] [CrossRef]
- Gaviria, B.; Coyne, L.; Thetford, P.E. Correlation of Skin Potential and Skin Resistance Measures. Psychophysiology 1969, 5, 465–477. [Google Scholar] [CrossRef]
- Bellmann, P.; Thiam, P.; Kestler, H.A.; Schwenker, F. Machine Learning-Based Pain Intensity Estimation: Where Pattern Recognition Meets Chaos Theory—An Example Based on the BioVid Heat Pain Database. IEEE Access 2022, 10, 102770–102777. [Google Scholar] [CrossRef]
- Subramaniam, S.D.; Dass, B. Automated Nociceptive Pain Assessment Using Physiological Signals and a Hybrid Deep Learning Network. IEEE Sens. J. 2021, 21, 3335–3343. [Google Scholar] [CrossRef]
- Werner, P.; Al-Hamadi, A.; Niese, R.; Walter, S.; Gruss, S.; Traue, H.C. Automatic Pain Recognition from Video and Biomedical Signals. In Proceedings of the 2014 22nd International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014; pp. 4582–4587. [Google Scholar] [CrossRef]
- Shukla, J.; Barreda-Angeles, M.; Oliver, J.; Nandi, G.C.; Puig, D. Feature Extraction and Selection for Emotion Recognition from Electrodermal Activity. IEEE Trans. Affect. Comput. 2021, 12, 857–869. [Google Scholar] [CrossRef]
- Das, P.; Khasnobish, A.; Tibarewala, D.N. Emotion recognition employing ECG and GSR signals as markers of ANS. In Proceedings of the 2016 Conference on Advances in Signal Processing (CASP), Pune, India, 9–11 June 2016; pp. 37–42. [Google Scholar] [CrossRef]
- Johnson, J.M.; Khoshgoftaar, T.M. Survey on deep learning with class imbalance. J. Big Data 2019, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Antoniou, E.; Bozios, P.; Christou, V.; Tzimourta, K.D.; Kalafatakis, K.; Tsipouras, M.G.; Giannakeas, N.; Tzallas, A.T. EEG-Based Eye Movement Recognition Using Brain–Computer Interface and Random Forests. Sensors 2021, 21, 2339. [Google Scholar] [CrossRef]
- Su, R.; Chen, X.; Cao, S.; Zhang, X. Random Forest-Based Recognition of Isolated Sign Language Subwords Using Data from Accelerometers and Surface Electromyographic Sensors. Sensors 2016, 16, 100. [Google Scholar] [CrossRef] [Green Version]
- Moeyersons, J.; Morales, J.; Seeuws, N.; Van Hoof, C.; Hermeling, E.; Groenendaal, W.; Willems, R.; Van Huffel, S.; Varon, C. Artefact Detection in Impedance Pneumography Signals: A Machine Learning Approach. Sensors 2021, 21, 2613. [Google Scholar] [CrossRef]
Features | Explanations | Pain Sample Mean (±Standard Deviation) | Silent Sample Mean (±Standard Deviation) |
---|---|---|---|
STD | Standard deviation | 0.151 (±0.064) | 0.104 (±0.047) |
Var | Variance | 0.027 (±0.023) | 0.013 (±0.013) |
Diff1_std | Standard deviation of the first difference | 0.034 (±0.015) | 0.026 (±0.008) |
Diff1_abs | Mean of the absolute value of the first difference | 0.025 (±0.011) | 0.020 (±0.006) |
fft_mean | Mean value of the spectrum | 0.035 (±0.010) | 0.029 (±0.009) |
fft_max | The maximum value in the spectrum except for the DC component | 0.174 (±0.088) | 0.114 (±0.064) |
E0 | Spectral energy in the 0–0.0625 Hz band | 25.321 (±22.443) | 13.663 (±12.849) |
TagField = 1 | TagField = 0 | |
---|---|---|
Training set | 160 | 160 |
Test set | 102 | 58 |
Total | 262 | 218 |
Number of Features | KNN | RF | NN |
---|---|---|---|
7 | 62.50% | 70.63% | 70.00% |
15 | 60.63% | 67.50% | 65.00% |
25 | 58.75% | 67.50% | 64.38% |
38 | 55.00% | 68.13% | 63.75% |
Sex | Total Sample Size | Correct Sample Size | Accuracy |
---|---|---|---|
Male | 87 | 61 | 70.11% |
Female | 73 | 52 | 72.60% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; He, J.; Fu, C.; Jiang, K.; Cao, J.; Wei, B.; Wang, X.; Luo, J.; Xu, W.; Zhu, J. Children’s Pain Identification Based on Skin Potential Signal. Sensors 2023, 23, 6815. https://doi.org/10.3390/s23156815
Li Y, He J, Fu C, Jiang K, Cao J, Wei B, Wang X, Luo J, Xu W, Zhu J. Children’s Pain Identification Based on Skin Potential Signal. Sensors. 2023; 23(15):6815. https://doi.org/10.3390/s23156815
Chicago/Turabian StyleLi, Yubo, Jiadong He, Cangcang Fu, Ke Jiang, Junjie Cao, Bing Wei, Xiaozhi Wang, Jikui Luo, Weize Xu, and Jihua Zhu. 2023. "Children’s Pain Identification Based on Skin Potential Signal" Sensors 23, no. 15: 6815. https://doi.org/10.3390/s23156815
APA StyleLi, Y., He, J., Fu, C., Jiang, K., Cao, J., Wei, B., Wang, X., Luo, J., Xu, W., & Zhu, J. (2023). Children’s Pain Identification Based on Skin Potential Signal. Sensors, 23(15), 6815. https://doi.org/10.3390/s23156815