A Method for Measuring Parameters of Defective Ellipse Based on Vision
<p>Camera imaging model.</p> "> Figure 2
<p>Approximation of circles.</p> "> Figure 3
<p>Repair of circles.</p> "> Figure 4
<p>Repair of a regular polygon. (<b>a</b>) Original image. (<b>b</b>) Repair result graph. (<b>c</b>) Cutting result graph.</p> "> Figure 5
<p>Standard ellipse.</p> "> Figure 6
<p>Defect ellipse. (<b>a</b>) Protruding defects; (<b>b</b>) concave defects; (<b>c</b>) mixed defects.</p> "> Figure 7
<p>Defect ellipse fitting results.</p> "> Figure 8
<p>Measurement system. (<b>a</b>) A 3D diagram of the measurement system; (<b>b</b>) a physical diagram of the measurement system.</p> "> Figure 9
<p>Tested oblique hole image: (<b>a</b>) small hole; (<b>b</b>) large hole.</p> "> Figure 10
<p>Defect micropore characteristics. (<b>a1</b>) Aerospace engine injection disk micropores (small). (<b>a2</b>) Aerospace engine injection disk micropores (large). (<b>b1</b>) Binary graph (small). (<b>b2</b>) Binary graph (large). (<b>c1</b>) Direct least squares fitting (small). (<b>c2</b>) Direct least squares fitting (large).</p> "> Figure 11
<p>Repair of defective circles. (<b>a</b>) Small hole; (<b>b</b>) large hole.</p> "> Figure 12
<p>Schematic diagram of the difference between the repaired image and the original image. (<b>a</b>) Small hole; (<b>b</b>) large hole.</p> "> Figure 13
<p>New intersection edge points added after expansion. (<b>a</b>) Small hole; (<b>b</b>) large hole.</p> "> Figure 14
<p>Effective edge point of defect ellipse. (<b>a</b>) Small hole; (<b>b</b>) large hole.</p> "> Figure 15
<p>Ellipse fitting results. (<b>a</b>) Small hole; (<b>b</b>) large hole.</p> ">
Abstract
:1. Introduction
2. Measurement Principles and Analysis
2.1. Camera Imaging Model
2.2. Ellipse Fitting Based on Least Squares Method
2.3. A Defect Edge Repair Model and Evaluation Based on Approximate Circles
3. Experiment and Verification
3.1. Simulation Experiment
3.2. Experimentation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeong, S.; Bae, J.; Yoon, S.; Yoon, Y. Effect of self-excited instability on single liquid swirl injector flow characteristics. Acta Astronaut. 2021, 178, 452–462. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, J.; Pan, D.; Gao, D. Center Extraction Method of Multiple and Overlapping Faculae Based on Ellipse Fitting. Acta Opt. Sin. 2020, 40, 67–74. [Google Scholar]
- Maini, E.S. Enhanced direct least square fitting of ellipses. Int. J. Pattern Recognit. Artif. Intell. 2006, 20, 939–953. [Google Scholar] [CrossRef]
- Liang, J.; Li, P.; Zhou, D.; So, H.C.; Liu, D.; Leung, C.-S.; Sui, L. Robust ellipse fitting via alternating direction method of multipliers. Signal Process. 2019, 164, 30–40. [Google Scholar] [CrossRef]
- Keipour, A.; Pereira, G.A.; Scherer, S. Real-Time Ellipse Detection for Robotics Applications. IEEE Robot. Autom. Lett. 2021, 6, 7009–7016. [Google Scholar] [CrossRef]
- Li, Q.; Xie, Y. Randomised hough transform with error propagation for line and circle detection. Pattern Analvsis Appl. 2003, 6, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.M.; Ahuja, S.; Wu, Q.M.J. A real-time ellipse detection based on edge grouping. In Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 1 October 2009. [Google Scholar]
- Soh, Y.; Bae, J.; Kim, D.; Kim, H. A New Method for Ellipse Fitting in Satellite Images. In Proceedings of the 2009 Second International Conference on Intelligent Computation Technology and Automation, Changsha, China, 10–11 October 2009. [Google Scholar]
- Xu, L.; Oja, E.; Kultanen, P. A new curve detection method: Randomized Hough transform (RHT). Pattern Recognit. Lett. 1990, 11, 331–338. [Google Scholar] [CrossRef]
- Basca, C.A.; Talos, M.; Brad, R. Randomized Hough Transform for Ellipse Detection with Result Clustering. In Proceedings of the EUROCON 2005—The International Conference on “Computer as a Tool”, Belgrade, Serbia, 21–24 November 2005. [Google Scholar]
- Jiang, L. Efficient randomized Hough transform for circle detection using novel probability sampling and feature points. Optik 2012, 123, 1834–1840. [Google Scholar] [CrossRef]
- Chen, X.; Qi, F. A new ellipse detection method using randomized Hough transform. J. Infrared Millim. Terahertz Waves 2000, 19, 43–47. [Google Scholar]
- Kwon, B.K.; Teng, Z.; Roh, T.J. Fast ellipse detection based on three point algorithm with edge angle information. Int. J. Control Autom. Syst. 2016, 14, 804–813. [Google Scholar] [CrossRef]
- Ito, Y.; Ogawa, K.; Nakano, K. Fast Ellipse Detection Algorithm Using Hough Transform on the GPU. In Proceedings of the 2011 Second International Conference on Networking and Computing, Osaka, Japan, 30 November–2 December 2011. [Google Scholar]
- Prasad, D.K.; Leung, M.K.H. Clustering of ellipses based on their distinctiveness: An aid to ellipse detection algorithms. In Proceedings of the 2010 3rd International Conference on Computer Science and Information Technology (ICCSIT), Chengdu, China, 9–11 July 2010. [Google Scholar]
- Wang, Y.; He, Z.; Liu, X.; Tang, Z.; Li, L. A fast and robust ellipse detector based on top-down least-square fitting. In Proceedings of the British Machine Vision Conference, Swansea, UK, 7–10 September 2015. [Google Scholar]
- Lu, C.; Xia, S.; Shao, M.; Fu, Y. Arc-Support Line Segments Revisited: An Efficient High-Quality Ellipse Detection. IEEE Trans. Image Process. 2020, 29, 768–781. [Google Scholar] [CrossRef] [PubMed]
- Gioi, R.G.V.; Jakubowicz, J.; Morel, J.-M.; Randall, G. LSD: A fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Li, Z.; Bai, X.; Zhou, F. Arc Adjacency Matrix-Based Fast Ellipse Detection. IEEE Trans. Image Process. 2020, 29, 4006–4020. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Cui, J.; Zhang, H. Image segmentation and fast scanning method of vision-probe measurement system. In Proceedings of the Tenth International Symposium on Precision Mechanical Measurements, Qingdao, China, 15–17 October 2021; Volume 12059, pp. 86–93. [Google Scholar]
- Yan, B.; Wang, B.; Li, Y. Optimal ellipse fitting method based on least-square principle. J. Beijing Univ. Aeronaut. Astronaut. 2008, 34, 295–298. [Google Scholar]
- Gu, M.; Cai, Z.; Li, Y. Traffic light recognition with circularity and color histogram. Comput. Eng. Des. 2012, 33, 243–247. [Google Scholar]
Type of Ellipse | Center of a Circle (pix) | Long and Short Axes (pix) | Angle of Roll (°) |
---|---|---|---|
standard ellipse | (300, 400) | (600, 400) | 0 |
protruding defect ellipse | (300.03, 400.50) | (597.94, 399.75) | −0.02 |
concave defect ellipse | (300.00, 400.14) | (599.45, 399.97) | −0.02 |
mixed defect ellipse | (300.28, 399.78) | (597.43, 398.89) | −0.09 |
Method | Parameter | Small Hole | Fitting Results | Large Hole | Fitting Results |
---|---|---|---|---|---|
OGP | short axis (mm) | 1.9 | 1.9942 | 2.3 | 2.4147 |
long axis (mm) | - | 2.2119 | - | 2.5034 | |
angle of roll (°) | 26 | 25.78 | 16 | 15.29 | |
the method of this article | short axis (mm) | 1.9 | 1.9027 | 2.3 | 2.3081 |
long axis (mm) | - | 2.1176 | - | 2.4025 | |
angle of roll (°) | 26 | 26.04 | 16 | 16.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Wang, L.; Liu, W.; Cui, J.; Tan, J. A Method for Measuring Parameters of Defective Ellipse Based on Vision. Sensors 2023, 23, 6433. https://doi.org/10.3390/s23146433
Zhang H, Wang L, Liu W, Cui J, Tan J. A Method for Measuring Parameters of Defective Ellipse Based on Vision. Sensors. 2023; 23(14):6433. https://doi.org/10.3390/s23146433
Chicago/Turabian StyleZhang, He, Li Wang, Wenya Liu, Jiwen Cui, and Jiubin Tan. 2023. "A Method for Measuring Parameters of Defective Ellipse Based on Vision" Sensors 23, no. 14: 6433. https://doi.org/10.3390/s23146433
APA StyleZhang, H., Wang, L., Liu, W., Cui, J., & Tan, J. (2023). A Method for Measuring Parameters of Defective Ellipse Based on Vision. Sensors, 23(14), 6433. https://doi.org/10.3390/s23146433