Optimized Design of Touching Parts of Soil Disinfection Machine Based on Strain Sensing and Discrete Element Simulation
<p>Structure diagram for a vertical rotary tilling-variable soil disinfection combine.The indicated values are as follows: (1) vertical spiral blade roll; (2) gearbox; (3) disinfection frame; (4) three-point hitch; (5) power input shaft; (6) pressure gauge; (7) disinfection spray bar; (8) reflux pump; (9) throttle valve; (10) flowmeter; (11) flow control box; (12) disinfection kit; (13) mulch spring; and (14) mulch plate.</p> "> Figure 2
<p>Schematic diagram for soil disinfection.</p> "> Figure 3
<p>System architecture diagram.</p> "> Figure 4
<p>System interface.</p> "> Figure 5
<p>Soil shear strength curves.</p> "> Figure 6
<p>Relationship curve between the axial stress and strain.</p> "> Figure 7
<p>The vertical rotary tillage process.</p> "> Figure 8
<p>Analysis of the effects of vertical rotary tillage. (<b>a</b>) Section diagram of the soil after tillage; and (<b>b</b>) division of the bounding keys.</p> "> Figure 9
<p>Forward resistance.</p> "> Figure 10
<p>Cutting torque.</p> "> Figure 11
<p>Calibration process and fitting result.</p> "> Figure 12
<p>Single blade roll operation process.</p> "> Figure 13
<p>Torque output bit value.</p> "> Figure 14
<p>Power consumption and torque variance for soil cutting at the same speed.</p> "> Figure 15
<p>Diagram of the tillage depth measurement points.</p> "> Figure 16
<p>Comparison of the potassium content in the soil before and after the application machine operation.</p> "> Figure 17
<p>Comparisons in potassium application.</p> ">
Abstract
:1. Introduction
2. Structure Design
2.1. Whole Machine Structure
2.2. Design of the Blade Roll Torque Detection System and the Variable Disinfection System
3. Design of the Simulation System
3.1. Soil Sample Acquisition
3.1.1. Shear Test for the Soil
3.1.2. Soil Strength Test
3.2. Soil Particle Modeling
3.3. Simulation and Postprocessing
3.4. Validation of the Simulation System
4. Experiments and Analysis
4.1. Virtual Simulation Experiment
4.1.1. Analysis of the Range
4.1.2. Analysis of Variance
4.1.3. Single-Factor Test for the Blade Roll Speed
4.2. Field Experiment
4.2.1. Tillage Performance Field Test
4.2.2. Variable Disinfection Field Test
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C. Promotion and application of agricultural mechanization operation combined with agronomy. Mod. Agric. Sci. Technol. 2009, 11, 193–195. [Google Scholar]
- Hao, Y.J.; Liu, C.Y.; Wang, Y.; Wang, W.L.; Wei, J. Present Condition of Research and Integrated Control on Replant Disease in Greenhouse Vegetable. Chin. Agric. Sci. Bull. 2007, 23, 396–398. [Google Scholar]
- He, C.; Xu, C.; Xuan, M. Development and application of coal-fired greenhouse soil disinfection machine. Agric. Eng. Technol. 2009, 17–18. [Google Scholar] [CrossRef]
- Kirkegaard, J.; Gardner, P.; Desmarchelier, J.; Angus, J. Biofumigation: Using Brassica species to control pests and diseases in horticulture and agriculture. In Proceedings of the 9th Australian Research Assembly on Brassicas, Wagga, NSW, Australia, 5–7 October 1993. [Google Scholar]
- Liu, X.; Lv, X.; Wang, S. Analysis on the Current Development in China’s Subsoiling Machinery and Proposals for Further Growth. Agric. Sci. Technol. Equip. 2011, 2, 130–131. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, W.; Li, X.; Li, W.; Guo, J.; Tang, M.; Li, F. Development Status of Subsoiling at Home and Abroad under Conservation Tilla. J. Agric. Mech. Res. 2016, 38, 253–258. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, F.; Wang, P. Conservation Tillage and Deep Tillage Technology And Equipment. Agric. Mach. Using Maint. 2013, 10, 27–29. [Google Scholar] [CrossRef]
- Boja, N.; Boja, F.; Teusdea, A.; Vidrean, D.; Marcu, M.V.; Iordache, E.; Duţă, C.I.; Borz, S.A. Resource allocation, pit quality, and early survival of seedlings following two motor-manual pit-drilling options. Forests 2018, 9, 665. [Google Scholar] [CrossRef] [Green Version]
- Pérez, S.N.C.; Borz, S.A. Improving the Event-Based Classification Accuracy in Pit-Drilling Operations: An Application by Neural Networks and Median Filtering of the Acceleration Input Signal Data. Sensors 2021, 21, 6288. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, X. Research status and prospect of Smash ridge technology. Rural Econ. Sci. Technol. 2020, 31, 69–71. [Google Scholar]
- Ning, Y. Study on Application and Popularization of Rive Fenlong Ridge under the Perspective of Agricultural Trusteeship. Master’s Thesis, Guangxi University, Nanning, China, 2018. [Google Scholar]
- Wang, L.; Wang, Z.; Guo, T. Vertical Rotary Tillage Tools. CN 20112023529.4A, 30 May 2012. Available online: https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMjEyMDcSEENOMjAxMTIwMjM1MjkxLjQaCGp3OHExOHox (accessed on 24 June 2023).
- Yang, W.; Huang, Q.; Li, Y.; Tang, Q.; Han, Y.; Li, G.; Yang, J. Effect of Operating Performance of Deep Vertical Rotary Tillage Tool Based on SPH. J. Agric. Mech. Res. 2020, 42, 147–152. [Google Scholar] [CrossRef]
- Xiao, X.; Guo, S.; Zheng, X.; Pan, R.; Yang, J.; Yang, W. Simulation Study on Vibration Reduction of Powder Ridge Cutting Tool. J. Agric. Mech. Res. 2021, 43, 26–30. [Google Scholar] [CrossRef]
- Bond, E.J.; Monro, H.A.U. Manual of Fumigation for Insect Control; FAO: Rome, Italy, 1984; Volume 54. [Google Scholar]
- Bourbos, V.; Skoudridakis, M.; Darakis, G.; Koulizakis, M. Calcium cyanamide and soil solarization for the control of Fusarium solani f. sp. cucurbitae in greenhouse cucumber. Crop Prot. 1997, 16, 383–386. [Google Scholar] [CrossRef]
- Chen, B. Exploration of soil disinfection methods for horticulture. China Flowers Hortic. 2012, 22, 40–42. [Google Scholar]
- Kita, N. Physical soil sterilization for soil-borned is ease control. In Proceedings of the Vegetable and TeaScience (Japan), Tokyo, Japan, 17 January 2006. [Google Scholar]
- Nishi, K. Soil sterilization with hot water injection, a new control measure for soilborne diseases, nematodes and weeds. In PSJ Soilborne Disease Workshop Report; The Phytopathological Society of Japan: Tokyo, Japan, 2000; pp. 190–199. Available online: https://cir.nii.ac.jp/crid/1572261550414324480 (accessed on 24 June 2023).
- Nishi, K. Hot water soil sterilization: Theories and records of application. Jpn. Greenh. Hortic. Assoc. Tokyo 2002, 185, 73–78. Available online: https://cir.nii.ac.jp/crid/1572261550504916480 (accessed on 24 June 2023).
- Nishi, K.; Namiki, F.; Hirayae, K.; Fujita, Y. Effectiveness of deep plowing for soil sterilization with hot water injection. Jpn. Sci. Technol. Inf. Aggregator Electron. 2000, 46, 50–53. [Google Scholar] [CrossRef]
- Gay, P.; Piccarolo, P.; Aimonino, D.R.; Tortia, C. A high efficacy steam soil disinfestation system, part II: Design and testing. Biosyst. Eng. 2010, 107, 194–201. [Google Scholar] [CrossRef]
- Gay, P.; Piccarolo, P.; Aimonino, D.R.; Tortia, C. A high efficiency steam soil disinfestation system, part I: Physical background and steam supply optimisation. Biosyst. Eng. 2010, 107, 74–85. [Google Scholar] [CrossRef]
- Peruzzi, A.; Raffaelli, M.; Ginanni, M.; Fontanelli, M.; Frasconi, C. An innovative self-propelled machine for soil disinfection using steam and chemicals in an exothermic reaction. Biosyst. Eng. 2011, 110, 434–442. [Google Scholar] [CrossRef]
- Karl-Heinz, D.; Adamek, R. Sensor-Based Insecticide Spraying to Control Cereal Aphids and Preserve Lady Beetles. Agron. J. 2012, 104, 1694–1701. [Google Scholar]
- Qi, S.; Huan, H. Technology Development of Global Sterilizing Soil by Steam from the Perspective of Patent. Anhui Agric. Sci. Bull. 2016, 22, 68–69. [Google Scholar] [CrossRef]
- Fanari, F.; Dachena, C. Microwave Disinfection of Farmlands: Nonlinear Heat Transfer Modeling. In Proceedings of the 2018 26th Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018; pp. 420–425. [Google Scholar]
- Xu, Y.; Jin, H.; Su, J.; Hu, X. Design and Experiment of Spike—Hood Soil Steam Processor. J. Agric. Mech. Res. 2020, 42, 144–149. [Google Scholar] [CrossRef]
- Liu, X. Development and Experiment of Combined Operation Machine for Split Deep Rotary Tillage and Soil Disinfection. Master’s Thesis, Jiangsu University, Zhenjiang, China, 2020. [Google Scholar]
- Fang, W.; Cao, A.; Wang, Q.; Yan, D.; Li, Y.; Jin, X.; Zhao, Q.; Qiu, Y.; Zhao, H. A New Integrated Soil Disinfection Machine Improves the Uniformity of Dazomet in Soil. Sci. Agric. Sin. 2021, 54, 2570–2580. [Google Scholar]
- Ma, S.; Jin, H.; Zhao, Y.; Hu, H.; Hu, X. Establishment of simulation model and weeding and disinfection effects of soil heating by microwave. J. Northwest AF Univ. 2022, 50, 146–154. [Google Scholar] [CrossRef]
- Real-Calvo, R.J.; Moreno-Muñoz, A.; Pallares-Lopez, V.; Gonzalez-Redondo, M.; Flores-Arias, J. Intelligent electronic device for the control of distributed generation. In Proceedings of the 2014 IEEE Fourth International Conference on Consumer Electronics Berlin (ICCE-Berlin), Berlin, Germany, 7–10 September 2014; pp. 268–269. [Google Scholar]
- Zhang, Z.F.; Hao, F.; Feng, Z.X. FEM analysis of vibration drum-soil model. Constr. Mach. 2008, 15, 89–93. [Google Scholar]
- Gao, J.; Qi, H. Soil Throwing Experiments for Reverse Rotary Tillage at Various Depths, Travel Speeds, and Rotational Speeds. Trans. ASABE 2017, 60, 1113–1121. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Wang, Z. Design and tests of the depth adjustable longitudinal rotary ditching machine. China Sci. 2017, 12, 1113–1117. [Google Scholar]
- Jiménez-Herrera, N.; Barrios, G.K.; Tavares, L.M. Comparison of breakage models in DEM in simulating impact on particle beds. Adv. Powder Technol. 2018, 29, 692–706. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, M.; Xie, J.; Cao, S.; Wu, A.; Wang, Z. Discrete element modeling and physical experiment research on the biomechanical properties of cotton stalk. Comput. Electron. Agric. 2023, 204, 107502. [Google Scholar] [CrossRef]
- Wang, J.; Tang, H.; Wang, J.; Huang, H.; Lin, N.; Yi, Z. Numerical Analysis and Performance Optimization Experiment on Hanging Unilateral Ridger for Paddy Field. Trans. Chin. Soc. Agric. Mach. 2017, 48, 72–80. [Google Scholar]
- Wang, X. Orthogonal experimental design method. Shanxi Chem. Ind. 1989, 53–58. [Google Scholar] [CrossRef]
- Guo, Z.; Du, G.; Li, Z.; Li, X. Orthogonal Experiment on Resistance Reduction by Soil-engaging Surfaces of Bull dozer Blade. Trans. Chin. Soc. Agric. Mach. 2015, 46, 372–378. [Google Scholar]
- Lü, J.; Shang, Q.; Yang, Y.; Li, Z.; Li, J.; Li, Z. Design Optimization and Experiment on Potato Haulm Cutter. Trans. Chin. Soc. Agric. Mach. 2016, 47, 106–114+198. [Google Scholar]
- Zhang, B. Development and Experiment Research of the Tilting Symmetric Vertical Rotary Tillage and Disinfection Integrated Machine. Master’s Thesis, Jiangsu University, Zhenjiang, China, 2019. [Google Scholar]
Depth | Cone Index | Moisture Content | Volume Field Capacity | Soil Density | Particle Size Distribution | Soil Compaction | Consistency (Standard Deviation) |
---|---|---|---|---|---|---|---|
Upper soil (0~200 mm) | 0.40 MPa | 34.52% | 32.1% | 2.45 g cm−3 | 11.49% clay, 41.13% silt, and 47.38% sand, respectively | 0~24.7 N/cm3 | Plastic limit = 24.75 ± 0.14%, liquid limit = 50.31 ± 0.17% |
Middle soil (200~400 mm) | 0.28 MPa | 32.78% | 24.7~38.4 N/cm3 | ||||
Lower soil (400~600 mm) | 0.20 MPa | 30.65% | 40 N/cm3 |
Layer | Internal Friction Angle/° | Soil Cohesion/kPa |
---|---|---|
Upper soil | 16.55 | 40.5 |
Middle soil | 20.37 | 42.8 |
Lower soil | 20.75 | 56.1 |
Poisson’s Ratio | Density/kg/m3 | Shear Modulus/pa | Particle Radius/mm | |
---|---|---|---|---|
Upper soil | 0.35 | 1732 | 1.1 × 106 | 8 |
Middle soil | 0.35 | 1844 | 1.5 × 106 | 8 |
Lower soil | 0.35 | 1893 | 1.7 × 106 | 8 |
Recovery Coefficient | Static Friction Coefficient | Rolling Friction Coefficient | |
---|---|---|---|
Upper soil | 0.4 | 0.6 | 0.15 |
Middle soil | 0.45 | 0.6 | 0.18 |
Lower soil | 0.5 | 0.6 | 0.2 |
Between different soil layers | 0.5 | 0.6 | 0.2 |
Bonding Contact Model | Value |
---|---|
Normal stiffness/N/m3 | 9.6 × 106~1.05 × 107 |
Tangential stiffness/N/m3 | 4.74 × 106~6.38 × 106 |
Critical positive stress/Pa | 8.2 × 104~9.2 × 104 |
Critical shear stress/Pa | 4.05 × 104~5.61 × 104 |
Bonding radius/mm | 8.54~8.79 |
Levels | Forward Speed/m/s | Tillage Depth/mm | Blade Roll Speed/r/min |
---|---|---|---|
1 | 0.2 | 400 | 260 |
2 | 0.26 | 500 | 300 |
3 | 0.32 | 600 | 340 |
Test Factors | Test Index | |||||
---|---|---|---|---|---|---|
No. | A | B | C | Cutting Power Consumption P/W | Forward Power Consumption P/W | Total Power Consumption P/W |
1 | 1 | 1 | 1 | 2318.22 | 161 | 2479.22 |
2 | 1 | 2 | 2 | 3240.94 | 181.3 | 3422.24 |
3 | 1 | 3 | 3 | 4296.46 | 201.2 | 4497.66 |
4 | 2 | 1 | 3 | 2987.02 | 194.96 | 3181.98 |
5 | 2 | 2 | 1 | 3948.19 | 396.77 | 4344.96 |
6 | 2 | 3 | 2 | 5147.43 | 416.23 | 5563.66 |
7 | 3 | 1 | 2 | 3400.21 | 381.22 | 3781.43 |
8 | 3 | 2 | 3 | 4873.57 | 427.52 | 5301.09 |
9 | 3 | 3 | 1 | 5641.32 | 805.37 | 6446.69 |
Soil Cutting Power Consumption | Test Index | ||
---|---|---|---|
Forward Speed | Tillage Depth | Blade Roll Speed | |
K1 | 9855.62 | 8705.45 | 11,907.73 |
K2 | 12,082.64 | 12,062.7 | 11,788.58 |
K3 | 13,915.1 | 15,085.21 | 12,157.05 |
R | 1353.16 | 2126.59 | 122.82 |
Forward power consumption | |||
K1 | 543.50 | 737.18 | 1363.14 |
K2 | 1007.96 | 1005.59 | 978.75 |
K3 | 1614.11 | 1422.80 | 823.68 |
Sum of Squares of Deviations | df | Mean Square Error | F | P | |
---|---|---|---|---|---|
Forward speed | 2,755,211.73 | 2 | 1,377,605.87 | 32.91 | 0.029 * |
Tillage depth | 6,789,781.32 | 2 | 3,394,890.66 | 81.12 | 0.012 * |
Blade roll speed | 23,569.70 | 2 | 11,784.85 | 0.28 | 0.78 |
Sum of residuals | 83,704.86 | 2 | 41,852.43 | ||
9,652,267.62 | 8 | ||||
R2: 0.991 |
Sample Points | Tillage Depth/mm | Sample Points | Tillage Depth/mm |
---|---|---|---|
1 | 512 | 16 | 445 |
2 | 503 | 17 | 527 |
3 | 462 | 18 | 505 |
4 | 453 | 19 | 505 |
5 | 512 | 20 | 486 |
6 | 519 | 21 | 519 |
7 | 508 | 22 | 479 |
8 | 452 | 23 | 486 |
9 | 474 | 24 | 495 |
10 | 427 | 25 | 464 |
11 | 457 | 26 | 485 |
12 | 508 | 27 | 460 |
13 | 510 | 28 | 523 |
14 | 489 | 29 | 502 |
15 | 516 |
Flow Rate Ratio of 3 | Flow Rate Ratio of 5 | ||
---|---|---|---|
Sample Points | Potassium Application/ppm | Sample Points | Potassium Application/ppm |
1 | 108.07 | 1 | 140.87 |
2 | 76.96 | 2 | 145.31 |
3 | 101.09 | 3 | 111.4 |
4 | 77.73 | 4 | 118.05 |
5 | 119.6 | 5 | 150.97 |
6 | 83.23 | 6 | 148.46 |
7 | 107.58 | 7 | 150.14 |
8 | 89.5 | 8 | 120.48 |
9 | 105.54 | 9 | 114.38 |
10 | 90.77 | 10 | 121.3 |
11 | 94.83 | 11 | 129.97 |
12 | 76.76 | 12 | 144.71 |
13 | 112.34 | 13 | 144.46 |
14 | 78.69 | 14 | 122.07 |
15 | 106.83 | 15 | 111.06 |
16 | 72.61 | 16 | 116.19 |
17 | 77.27 | 17 | 146.69 |
18 | 81.76 | 18 | 120.9 |
19 | 101.51 | 19 | 132.63 |
20 | 98.75 | 20 | 145.87 |
21 | 103.59 | 21 | 108.48 |
22 | 88.53 | 22 | 114.43 |
23 | 89.48 | 23 | 114.65 |
24 | 85.28 | 24 | 120.89 |
25 | 76.09 | 25 | 153.39 |
Average value | 92.18 | 129.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Shen, Y.; Ma, B. Optimized Design of Touching Parts of Soil Disinfection Machine Based on Strain Sensing and Discrete Element Simulation. Sensors 2023, 23, 6369. https://doi.org/10.3390/s23146369
Gao J, Shen Y, Ma B. Optimized Design of Touching Parts of Soil Disinfection Machine Based on Strain Sensing and Discrete Element Simulation. Sensors. 2023; 23(14):6369. https://doi.org/10.3390/s23146369
Chicago/Turabian StyleGao, Jianmin, Yuhao Shen, and Benlei Ma. 2023. "Optimized Design of Touching Parts of Soil Disinfection Machine Based on Strain Sensing and Discrete Element Simulation" Sensors 23, no. 14: 6369. https://doi.org/10.3390/s23146369
APA StyleGao, J., Shen, Y., & Ma, B. (2023). Optimized Design of Touching Parts of Soil Disinfection Machine Based on Strain Sensing and Discrete Element Simulation. Sensors, 23(14), 6369. https://doi.org/10.3390/s23146369