Performance Evaluation of CentiSpace Navigation Augmentation Experiment Satellites
<p>Framework diagram of CentiSpace performance evaluation.</p> "> Figure 2
<p>Strategy to accept a raw measurement.</p> "> Figure 3
<p>Orbit determination.</p> "> Figure 4
<p>Signal evaluation system.</p> "> Figure 5
<p>Integrity of BDS raw measurements.</p> "> Figure 6
<p>C/N0 variation with co-frequency self-interference.</p> "> Figure 7
<p>Multipath evaluation for BDS C39.</p> "> Figure 8
<p>Augmentation signal off.</p> "> Figure 9
<p>Augmentation signal on.</p> "> Figure 10
<p>S-curve of of navigation augmentation signal.</p> ">
Abstract
:1. Introduction
2. Performance Evaluation Methods
2.1. GNSS Receiver Evaluation Methods
2.1.1. Integrity of Raw Measurements
2.1.2. Variation of C/N0 with Co-Frequency Self-Interference
2.1.3. Multipath Error
2.1.4. Observation Noise Error
2.1.5. Orbit Determination
2.2. Augmentation Signal Evaluation Methods
2.2.1. Quality Analysis in Modulation Domain
2.2.2. Quality Analysis in Correlation Domain
- (1)
- Correlation loss
- (2)
- Zero-Crossing Bias of S-Curve
3. Performance of Experiment Satellite
3.1. Performance of GNSS Receiver
3.1.1. Integrity of Raw Measurements
3.1.2. Variation of C/N0 with Co-Frequency Self-Interference
3.1.3. Multipath Error
3.1.4. Observation Noise Error
3.1.5. Orbit Determination
3.2. Performance of Navigation Augmentation Signal
3.2.1. Quality analysis in Modulation Domain
3.2.2. Quality Analysis in Correlation Domain
- (1)
- Correlation loss
- (2)
- Zero-Crossing Bias of S-Curve
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Li, J.; Xu, J.; Tang, J.; Guo, H.; He, H. Contribution of the compass satellite navigation system to global PNT users. Chin. Sci. Bull. 2011, 56, 2813–2819. [Google Scholar] [CrossRef] [Green Version]
- Ge, H.; Li, B.; Jia, S.; Nie, L.; Wu, T.; Yang, Z.; Shang, J.; Zheng, Y.; Ge, M. LEO enhanced global navigation satellite system (LeGNSS): Progress, opportunities, and challenges. Geo-Spat. Inf. Sci. 2022, 25, 1–13. [Google Scholar] [CrossRef]
- Xiaohong, Z.; Fujian, M. Review of the development of LEO navigation-augmented GNSS. Acta Geod. Cartogr. Sin. 2019, 48, 1073. [Google Scholar]
- Shustov, B. Satellite Mega-Constellations and the Dark and Quiet Sky Problem. Astron. Rep. 2022, 66, 725–735. [Google Scholar] [CrossRef]
- Lv, F.; Lu, J.; Gao, W.; Zhang, G.; Liu, C.; Chen, Y.; Li, M.; Wang, W. Research and simulation of LEO-based navigation augmentation. Sci. Sin. Phys. Mech. Astron. 2021, 51, 019506. [Google Scholar]
- De Bakker, P.F.; van der Marel, H.; Tiberius, C.C. Geometry-free undifferenced, single and double differenced analysis of single frequency GPS, EGNOS and GIOVE-A/B measurements. GPS Solut. 2009, 13, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Cai, C.; He, C.; Santerre, R.; Pan, L.; Cui, X.; Zhu, J. A comparative analysis of measurement noise and multipath for four constellations: GPS, BeiDou, GLONASS and Galileo. Surv. Rev. 2016, 48, 287–295. [Google Scholar] [CrossRef]
- Gong, X.; Wang, F. Research on the influence of pseudorange multipath error and observation noise on autonomous orbit determination for GPS spaceborne receiver. Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 1048–1055. [Google Scholar]
- Liu, Y.; Yang, Y.; Chen, L.; Pan, H.; Ran, Y. Analysis of phase bias between GNSS signal components caused by nonideal group delay. Navigation 2020, 67, 291–305. [Google Scholar] [CrossRef]
- Su, C.; Guo, S.; Liu, X.; Rao, Y.; Wang, M. Signal Quality Assessment of BDS-3 Preliminary System. J. Electron. Inf. Technol. 2020, 42, 2689–2697. [Google Scholar]
- Liu, Y.; Chen, L.; Yang, Y.; Pan, H.; Ran, Y. Theoretical evaluation of group delay on pseudorange bias. GPS Solut. 2019, 23, 69. [Google Scholar] [CrossRef]
- Kaplan, E.D.; Hegarty, C. Understanding GPS/GNSS: Principles and Applications; Artech: Fremont, CA, USA, 2017. [Google Scholar]
- Li, Y.; Li, J.; Lin, P.; Guo, L.; Wei, R.; Liu, D. Quality Assessment of the Beidou-3 New Signal B1C and B2a Observation Data. Adv. Earth Sci. 2018, 33, 1161. [Google Scholar]
- Yang, L.; Ruan, H.; Zhang, Y. Autonomous Orbit Determination System of Navigation Satellite Based on Spaceborne GPS Technology. Secur. Commun. Netw. 2022, 2022, 7463315. [Google Scholar] [CrossRef]
- China Satellite Navigation System Management Office. BeiDou Navigation Satellite System Signal in Space Interface Control Document Open Service Signal B1C (Version 1.0)[EB/OL]. 2017. Available online: http://www.beidou.gov.cn/xt/gfxz/201712/P020171226741342013031.pdf (accessed on 23 May 2023).
- China Satellite Navigation System Management Office. BeiDou Navigation Satellite System Signal in Space Interface Control Document Open Service Signal B2a (Version 1.0)[EB/OL]. 2017. Available online: http://www.beidou.gov.cn/xt/gfxz/201712/P020171226742357364174.pdf (accessed on 23 May 2023).
Signal | Frequency | Modulation | Code Rate |
---|---|---|---|
FA | 157X.XX | BPSK | 2.046 MHz |
FB | 117X.XX | BPSK | 2.046 MHz |
Normal | Self-Interference | ||||
---|---|---|---|---|---|
Signal | PRNoise (mm) | CPNoise (mm) | PRNoise (mm) | CPNoise (mm) | |
BDS | B1C | 64.73 | 1.54 | 65.02 | 1.49 |
B2a | 43.48 | 1.83 | 46.91 | 1.92 |
Scheme | Model |
---|---|
Raw measurement | Dual-frequency combination |
Elevation | >10° |
Ephemeris | Precise ephemeris (IGS) |
Parameter estimation | Extended Kalman filter |
LEO dynamics model | Reduced-dynamic approach |
R (cm) | T (cm) | N (cm) | 3D (cm) | |
---|---|---|---|---|
BDS | 1.05 | 2.60 | 1.84 | 3.35 |
GNSS | 0.89 | 2.35 | 1.26 | 2.82 |
Signal | I/Q Phase Relation | Correlation Loss | S-Curve Bias (1 Chip) |
---|---|---|---|
FA/FB | 90° | 0.3 dB | 0.3 ns |
Signal | High Elevation | Medium Elevation | Low Elevation |
---|---|---|---|
FA | 0.38° | 0.37° | 1.69° |
FB | 0.32° | 0.35° | 1.45° |
Signal | High Elevation | Medium Elevation | Low Elevation | |
---|---|---|---|---|
FA | In-phase | 0.25 dB | 0.26 dB | 0.34 dB |
Quadrature | 0.23 dB | 0.29 dB | 0.31 dB | |
FB | In-phase | 0.17 dB | 0.19 dB | 0.29 dB |
Quadrature | 0.20 dB | 0.22 dB | 0.25 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Lv, F.; Yang, Q.; Xiong, T.; Liu, Y.; Yang, Y.; Pan, H.; Wang, S.; Liu, M.; He, R.; et al. Performance Evaluation of CentiSpace Navigation Augmentation Experiment Satellites. Sensors 2023, 23, 5704. https://doi.org/10.3390/s23125704
Chen L, Lv F, Yang Q, Xiong T, Liu Y, Yang Y, Pan H, Wang S, Liu M, He R, et al. Performance Evaluation of CentiSpace Navigation Augmentation Experiment Satellites. Sensors. 2023; 23(12):5704. https://doi.org/10.3390/s23125704
Chicago/Turabian StyleChen, Lin, Feiren Lv, Qiangwen Yang, Tulin Xiong, Yuqi Liu, Yi Yang, Hongchen Pan, Suisheng Wang, Min Liu, Renlun He, and et al. 2023. "Performance Evaluation of CentiSpace Navigation Augmentation Experiment Satellites" Sensors 23, no. 12: 5704. https://doi.org/10.3390/s23125704
APA StyleChen, L., Lv, F., Yang, Q., Xiong, T., Liu, Y., Yang, Y., Pan, H., Wang, S., Liu, M., He, R., Zheng, D., Zhang, L., & Jin, Y. (2023). Performance Evaluation of CentiSpace Navigation Augmentation Experiment Satellites. Sensors, 23(12), 5704. https://doi.org/10.3390/s23125704