A Cycle Slip Detection and Repair Method Based on Inertial Aiding for BDS Triple-Frequency Signals
<p>The precision impact on cycle slip detection when INS navigates independently.</p> "> Figure 2
<p>The precision of cycle slip detection for a 10 s signal outage.</p> "> Figure 3
<p>Experimental platform and hardware.</p> "> Figure 4
<p>Inertial-aided cycle slip detection and repair based on the BDS/INS tightly coupled system.</p> "> Figure 5
<p>Different cycle slip detection models for C25 when no cycle slip occurs: (<b>a</b>) The traditional pseudorange and phase combination method; (<b>b</b>) INS-aided cycle slip detection and repair-improved method.</p> "> Figure 6
<p>The detection results of the cycle slip simulation (Scheme I): (<b>a</b>) C25; (<b>b</b>) C39; (<b>c</b>) C59.</p> "> Figure 7
<p>The detection results of the cycle slip simulation (Scheme II): (<b>a</b>) C25; (<b>b</b>) C39; (<b>c</b>) C59.</p> "> Figure 8
<p>Errors of the INS-predicted geometric distance during the BDS signal outage.</p> ">
Abstract
:1. Introduction
2. BDS/INS Tightly Coupled Integration Model
2.1. INS Dynamic Model
2.2. BDS/INS Measurement Model
2.3. Extended Kalman Filtering Model
3. Inertial-Aided Cycle Slip Detection and Repair for BDS Triple-Frequency Signals
3.1. Cycle Slip Detection Model Based on Inertial Aiding
3.2. Supplement for Particular Cases
3.3. Methodology to Confirm and Repair Cycle Slip
4. Experimental Results and Discussion
4.1. Performance Analysis of Cycle Slip Detection and Repair Based on Inertial Aiding for BDS Triple-Frequency Signals
4.2. Cycle Slip Detection in BDS Signal Outage Condition
5. Conclusions
- (1)
- The INS-aided cycle slip detection and repair for the BDS triple-frequency algorithm proposed in this paper can be unlimited by the pseudorange observation accuracy. It can complete detection and repair of the cycle slip avoiding the influence of pseudorange noise and a multipath effect.
- (2)
- The proposed algorithm unites the pseudorange-phase combination based on inertial aiding with a geometry-free phase combination. It can be not only valid for the small cycle slips but also valid for the particular case, such as insensitive cycle slips. The results investigate the effectiveness of the proposed algorithm.
- (3)
- A cycle slip repair method based on the L2-norm minimum principle was adopted in this paper, and the experimental results show that all added cycle slips can be correctly searched and repaired by this method.
- (4)
- The cycle slip detection after signal recovery will be impacted by the INS-predicted distance errors. The longer the signal outage time is, the larger the INS-accumulated error is, and the cycle slip detection and repair will be disturbed. All the cycle slips can be correctly detected and repaired within a 14 s satellite signal that is unlocked.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chai, D.S.; Sang, W.G.; Chen, G.L.; Ning, Y.P.; Xing, J.P.; Yu, M.W.; Wang, S.L. A novel method of ambiguity resolution and cycle slip processing for single-frequency GNSS/INS tightly coupled integration system. Adv. Space Res. 2022, 69, 359–375. [Google Scholar] [CrossRef]
- Su, M.K.; Yang, Y.X.; Qiao, L.; Liu, E.X.; Song, H.N.; Wu, C.; Zhang, H. An improved triple-frequency cycle slip detection and repair method based on wavelet packet transform and adaptive threshold for BeiDou System satellite. IET Radar Sonar Navig. 2023, 17, 27–37. [Google Scholar] [CrossRef]
- Zhang, F.; Chai, H.Z.; Xiao, G.R.; Liu, C.J.; Li, L.Y.; Du, Z.Q. Improving GNSS triple-frequency cycle slip repair using ACMRI algorithm. Adv. Space Res. 2022, 69, 347–358. [Google Scholar] [CrossRef]
- Yao, Y.F.; Wang, S. Effect of selection of combined observations on cycle-slip repair success rate for BDS triple-frequency signals. Adv. Space Res. 2020, 66, 2914–2925. [Google Scholar] [CrossRef]
- Fan, X.X.; Tian, R.; Dong, X.R.; Shuai, W.Y.; Fan, Y.C. Cycle slip detection and repair for BeiDou-3 triple-frequency signals. Int. J. Adv. Robot. Syst. 2020, 17, 172988142092640. [Google Scholar] [CrossRef]
- Li, K.Z.; Ban, H.F.; Jiao, Y.X.; Lv, S.K. A cycle slip detection and repair method using BDS triple-frequency optimization combination with wavelet denoising. Int. J. Aerosp. Eng. 2022, 1, 5110875. [Google Scholar] [CrossRef]
- Xie, R.Y.; Yang, L.B.; Zhao, J.J. A method of detecting and repairing cycle slip of BDS based on double difference observation. Fire Control Command. Control 2020, 45, 124–127. [Google Scholar]
- Elashiry, A.A.; Youssef, M.A.; Abdel Hamid, M.A. Phase-phase and phase-code methods modification for precise detecting and predicting the GPS cycle slip error. Annu. Navig. 2015, 22, 31–48. [Google Scholar] [CrossRef]
- Zhang, C.X.; Dang, Y.M.; Xue, S.Q.; Zhang, L.P. An improved BDS cycle slip detection method based on TurboEdit. Sci. Surv. Mapp. 2021, 46, 47–52+64. [Google Scholar]
- Cai, C.L.; Shen, W.B.; Zeng, W.L.; Yu, H.G.; Xie, X.P. Detection and repair cycle-slip by reconstruction Doppler integral algorithm and STPIR. Acta Geod. Cartogr. Sin. 2021, 50, 160–168. [Google Scholar]
- Xu, Y.H.; Yao, Y.B. Circle-slip detection and repair for Beidou triple-frequency observation. Eng. Surv. Mapp. 2018, 27, 25–30+36. [Google Scholar]
- Cederholm, P.; Plausinaitis, D. Cycle slip detection in single frequency GPS carrier phase observations using expected doppler shift. Nord. J. Surv. Real Estate Res. 2014, 10, 63–79. [Google Scholar]
- Gao, X.; Yang, Z.Q.; Liu, Y.; Yang, B. Real-time cycle slip correction for a single triple-frequency BDS receiver based on ionosphere-reduced virtual signals. Adv. Space Res. 2018, 62, 2381–2392. [Google Scholar] [CrossRef]
- Gu, X.Y.; Zhu, B.C. Detection and correction of cycle slip in triple-frequency GNSS positioning. IEEE Access 2017, 5, 12584–12595. [Google Scholar] [CrossRef]
- Lu, W.C.; Gao, J.X.; Yan, C.; Xu, W.; Yang, H.; Yang, H.S. Research on cycle slip detection algorithm for Beidou triple-frequency carrier pseudorange combination. J. Geod. Geodyn. 2020, 40, 117–122. [Google Scholar]
- Cui, L.L.; Chen, D.M.; Wang, X.L.; An, J.C. BDS three-frequency pseudo-range/carrier linear combination cycle slip detection and correction. Eng. Surv. Mapp. 2018, 27, 142. [Google Scholar]
- Suzuki, T. GNSS odometry: Precise trajectory estimation based on carrier phase cycle slip estimation. IEEE Robot. Autom. Lett. 2022, 7, 7319–7326. [Google Scholar] [CrossRef]
- Yoon, Y.M.; Lee, B.S.; Heo, M.B. Multiple Cycle Slip Detection Algorithm for a Single Frequency Receiver. Sensors 2022, 22, 2525. [Google Scholar] [CrossRef]
- Wang, L.X.; Gu, Y.; Wei, E.H.; Sui, L.F.; Liu, X.X. INS-aided single-frequency cycle-slip detection for real-time kinematic GNSS. In Proceedings of the China Navigation Satellite Conference 2018 Proceedings, Harbin, China, 23–25 May 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 525–535. [Google Scholar]
- Altmayer, C. Enhancing the Integrity of Integrated GPS/INS Systems by Cycle Slip Detection and Correction. In Proceedings of the IEEE Intelligent Vehicles Symposium 2000, Dearborn, MI, USA, 5 October 2000; Volume 1, pp. 174–179. [Google Scholar]
- Lee, H.K.; Wang, J.L.; Rizos, C. Effective Cycle Slip Detection and Identification for High Precision GPS/INS Integrated Systems. J. Navig. 2003, 56, 475–486. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Z.; Yao, Y.B.; Zhang, L. Inertially aided real-time single frequency cycle slip detection. J. Geomat. 2020, 45, 20–23. [Google Scholar]
- Kim, Y.; Song, J.; Ho, Y.; Kee, C.; Park, B. Optimal selection of an inertial sensor for cycle slip detection considering single-frequency RTK/INS integrated navigation. Trans. Jpn. Soc. Aeronaut. Space Sci. 2016, 59, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Song, J.; Kee, C.; Park, B. GPS Cycle Slip Detection Considering Satellite Geometry Based on TDCP/INS Integrated Navigation. Sensors 2015, 15, 25336–25365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, M.Z.; Hu, Z.G.; Zhao, Q.L.; Su, J.L. Method of cycle slip detection based in GNSS/INS tightly coupled mode. J. Geomat. Sci. Technol. 2019, 36, 335–339. [Google Scholar]
- Chen, K.; Chang, G.B.; Chen, C.; Zhu, T. An improved TDCP-GNSS/INS integration scheme considering small cycle slip for low-cost land vehicular applications. Meas. Sci. Technol. 2021, 32, 055006. [Google Scholar] [CrossRef]
- Vanek, B.; Farkas, M.; Rozsa, S. Position and attitude determination in urban canyon with tightly coupled sensor fusion and a prediction-based GNSS cycle slip detection using low-cost instruments. Sensors 2023, 23, 2141. [Google Scholar] [CrossRef]
- Takasu, T.; Yasuda, A. Cycle slip detection and fixing by MEMS—IMU/GPS integration for mobile environment RTK-GPS. In Proceedings of the 21st International Technical Meeting of the Satellite Division of the Institute of Navigation, Savannah, GA, USA, 16–19 September 2008; pp. 1–8. [Google Scholar]
- Ning, Y.P.; Wang, J.; Hu, X.X.; Wang, S.D. Inertial aided cycle-slip detection and repair for BDS triple-frequency signal in severe multipath environment. Acta Geod. Cartogr. Sin. 2016, 45, 179–187. [Google Scholar]
- Han, H.Z.; Wang, J.; Li, Z.K. Inertial aided kinematic GPS cycle slip detection and correction for GPS/INS tightly coupled system. Acta Geod. Cartogr. Sin. 2015, 44, 848–857. [Google Scholar]
- Xiao, K.; Sun, F.P.; Wang, H.Y.; Zhang, L.D.; Liu, S. Inertial aided triple-frequency cycle slip detection and repair of BDS/INS tightly-coupled integration. J. Chin. Inert. Technol. 2018, 26, 215–222. [Google Scholar]
- Huang, L.Y.; Lu, Z.P.; Zhai, G.J.; Ouyang, Y.Z.; Huang, M.T.; Lu, X.P.; Wu, T.Q.; Li, K.F. A new triple-frequency cycle slip detecting algorithm validated with BDS data. GPS Solut. 2016, 20, 761–769. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, D.J.; Zhang, L.; Li, Q.S.; Wu, J. Tightly Coupled GNSS/INS Integration with Robust Sequential Kalman Filter for Accurate Vehicular Navigation. Sensors 2020, 20, 561. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Wang, J.; Mingyi, D.U. GPS/BDS/INS tightly coupled integration accuracy improvement using an improved adaptive interacting multiple model with classified measurement update. Chin. J. Aeronaut. 2018, 31, 142–152. [Google Scholar] [CrossRef]
- Xiao, K.; Sun, F.P.; He, M.H.; Zhang, L.D.; Zhu, X.H. Inertial aided BDS triple-frequency integer ambiguity rounding method. Adv. Space Res. 2021, 67, 1638–1655. [Google Scholar] [CrossRef]
- Wu, L.; Sun, Y.R.; Fu, X.Y.; Xu, R. A novel two-stage adaptive filtering model-based GNSS/INS tightly coupled precise relative navigation algorithm for autonomous aerial refueling. Int. J. Aerosp. Eng. 2022, 2022, 8546466. [Google Scholar] [CrossRef]
- Khan, B.; Qin, Y.Y. Improving the performance of INS/GNSS system using the approach of carrier phase measurements. Int. J. Eng. Res. Afr. 2015, 21, 172–183. [Google Scholar] [CrossRef]
- Yuan, H.J.; Zhang, Z.T.; He, X.F.; Zhou, Y.; Miao, W.K. Real-time cycle slip detection and repair method for BDS-3 five-frequency data. IEEE Access 2021, 9, 51189–51201. [Google Scholar] [CrossRef]
- Gao, M.; Liu, S.L.; Xiao, G.W.; Zhao, W.H.; Lv, D. Research on Tightly Coupled Multi-Antenna GNSS/MEMS Single-Frequency Single-Epoch Attitude Determination in Urban Environment. Remote Sens. 2021, 13, 2710. [Google Scholar] [CrossRef]
- Lin, J.L.; Qiao, S.B.; Yan, K.; Zhang, X. The detection and repair of BDS triple-frequency cycle-slip of weakening the influence of ionosphere. In China Navigation Satellite Conference 2020 Proceedings; Springer: Berlin/Heidelberg, Germany, 2020; pp. 255–264. [Google Scholar]
i | j | k | λ/m | /Cycle | |
---|---|---|---|---|---|
1 | 4 | −5 | 6.37 | 0.10 | 0.13 |
−1 | −5 | 6 | 20.93 | −0.43 | 0.16 |
0 | −1 | 1 | 4.88 | −0.33 | 0.03 |
−1 | −6 | 7 | 3.96 | −0.75 | 0.19 |
1 | 3 | −4 | 2.76 | −0.22 | 0.10 |
1 | 2 | −3 | 1.77 | −0.55 | 0.07 |
−1 | −7 | 8 | 2.19 | −1.08 | 0.21 |
−3 | 5 | −1 | 3.57 | 11.64 | 0.12 |
−4 | 0 | 5 | 3.05 | 11.21 | 0.13 |
−4 | 1 | 4 | 8.14 | 11.54 | 0.11 |
−3 | 6 | −2 | 13.32 | 11.97 | 0.14 |
4 | −2 | −3 | 12.21 | −11.86 | 0.11 |
3 | −8 | 4 | 2.99 | −12.62 | 0.19 |
5 | 3 | −9 | 29.31 | −11.44 | 0.21 |
5 | 2 | −8 | 4.19 | −11.76 | 0.19 |
a | b | c | /Cycle | |
---|---|---|---|---|
1 | 1 | −2 | −0.36 | 0.011 |
1 | 3 | −4 | −0.04 | 0.024 |
0 | −1 | 1 | −0.16 | 0.007 |
1 | −1 | 0 | −0.68 | 0.006 |
1 | −2 | 1 | −0.83 | 0.012 |
1 | 2 | −3 | −0.20 | 0.018 |
−3 | 2 | 1 | 1.86 | 0.016 |
1 | 1 | −2 | −0.36 | 0.017 |
2 | −1 | −1 | −1.19 | 0.010 |
2 | 1 | −3 | −0.87 | 0.017 |
Satellite PRN | Elevation Angle (°) | (Cycles) | (Cycles) | ||
---|---|---|---|---|---|
(0,−1,1) | (−1,−5,6) | (0,−1,1) | (−1,−5,6) | ||
C24 | 37~50 | 0.0711 | 0.3725 | 0.0334 | 0.0860 |
C25 | 68~80 | 0.0510 | 0.2885 | 0.0257 | 0.0662 |
C38 | 21~29 | 0.1453 | 0.4283 | 0.0719 | 0.2022 |
C39 | 62~63 | 0.0506 | 0.2935 | 0.0317 | 0.0689 |
C41 | 44~58 | 0.0613 | 0.3404 | 0.0434 | 0.0765 |
C59 | 47~47 | 0.0522 | 0.2856 | 0.0286 | 0.0796 |
C60 | 32~32 | 0.0642 | 0.3356 | 0.0604 | 0.1352 |
Average | - | 0.0708 | 0.3349 | 0.0422 | 0.1021 |
Satellite PRN | Epoch | Cycle Slip (Cycles) | Detection Results (Cycles) | (Cycles) | Estimated Cycle Slip (Cycles) | ||
---|---|---|---|---|---|---|---|
(0,−1,1) | (−1,−5,6) | (1,−1,0) | |||||
C25 (MEO) | 100th | (1,0,0) | 0.001 | −0.993 | 0.193 | 0.007 | (1,0,0) |
400th | (0,1,0) | −0.985 | −4.976 | −0.246 | 0.028 | (0,1,0) | |
700th | (0,0,1) | 0.949 | 6.039 | 0.001 | 0.064 | (0,0,1) | |
1000th | (1,1,0) | −0.986 | −5.908 | −0.054 | 0.093 | (1,1,0) | |
1300th | (1,0,1) | 1.082 | 5.099 | 0.192 | 0.129 | (1,0,1) | |
1600th | (0,1,1) | 0.016 | 1.072 | −0.246 | 0.074 | (0,1,1) | |
1900th | (1,1,1) | −0.009 | −0.052 | −0.056 | 0.053 | (1,1,1) | |
C39 (IGSO) | 100th | (1,0,0) | −0.005 | −1.025 | 0.192 | 0.026 | (1,0,0) |
400th | (0,1,0) | −1.013 | −5.052 | −0.246 | 0.054 | (0,1,0) | |
700th | (0,0,1) | 0.971 | 6.042 | −0.001 | 0.051 | (0,0,1) | |
1000th | (1,1,0) | −0.996 | −5.952 | −0.056 | 0.048 | (1,1,0) | |
1300th | (1,0,1) | 1.010 | 5.050 | 0.192 | 0.051 | (1,0,1) | |
1600th | (0,1,1) | 0.012 | 1.051 | −0.245 | 0.052 | (0,1,1) | |
1900th | (1,1,1) | −0.021 | −0.121 | −0.057 | 0.123 | (1,1,1) | |
C59 (GEO) | 100th | (1,0,0) | −0.004 | −1.035 | 0.193 | 0.035 | (1,0,0) |
400th | (0,1,0) | −0.984 | −4.941 | −0.246 | 0.061 | (0,1,0) | |
700th | (0,0,1) | 1.041 | 5.910 | −0.007 | 0.099 | (0,0,1) | |
1000th | (1,1,0) | −0.978 | −5.902 | −0.051 | 0.101 | (1,1,0) | |
1300th | (1,0,1) | 0.995 | 4.980 | 0.189 | 0.021 | (1,0,1) | |
1600th | (0,1,1) | 0.032 | 1.172 | −0.245 | 0.175 | (0,1,1) | |
1900th | (1,1,1) | −0.023 | −0.122 | −0.060 | 0.124 | (1,1,1) |
Satellite PRN | Epoch | Cycle Slip (Cycles) | Detection Results (Cycles) | Cycles) | Estimated Cycle Slip (Cycles) | ||
---|---|---|---|---|---|---|---|
(0,−1,1) | (−1,−5,6) | (1,−1,0) | |||||
C25 (MEO) | 400th | (0,1,2) | 1.001 | 7.007 | −0.247 | 0.007 | (0,1,2) |
401th | (3,2,−2) | −3.994 | −24.985 | 0.079 | 0.016 | (3,2,−2) | |
402th | (2,3,4) | 0.998 | 6.978 | −0.363 | 0.022 | (2,3,4) | |
403th | (2,0,−1) | −0.999 | −7.997 | 0.388 | 0.005 | (2,0,−1) | |
404th | (4,−3,1) | 3.999 | 17.028 | 1.509 | 0.028 | (4,−3,1) | |
405th | (4,2,5) | 2.987 | 15.986 | 0.268 | 0.019 | (4,2,5) | |
406th | (0,2,4) | 2.007 | 14.019 | −0.496 | 0.020 | (0,2,4) | |
C39 (IGSO) | 400th | (0,1,2) | 0.987 | 6.948 | −0.246 | 0.054 | (0,1,2) |
401th | (3,2,−2) | −4.033 | −25.057 | 0.078 | 0.066 | (3,2,−2) | |
402th | (2,3,4) | 0.932 | 7.047 | −0.357 | 0.083 | (2,3,4) | |
403th | (2,0,−1) | −0.973 | −8.004 | 0.379 | 0.028 | (2,0,−1) | |
404th | (4,−3,1) | 4.027 | 17.046 | 1.518 | 0.054 | (4,−3,1) | |
405th | (4,2,5) | 3.091 | 16.007 | 0.270 | 0.091 | (4,2,5) | |
406th | (0,2,4) | 1.972 | 14.050 | −0.497 | 0.057 | (0,2,4) | |
C59 (GEO) | 400th | (0,1,2) | 1.016 | 7.059 | −0.246 | 0.061 | (0,1,2) |
401th | (3,2,−2) | −3.983 | −25.006 | 0.080 | 0.018 | (3,2,−2) | |
402th | (2,3,4) | 1.063 | 7.024 | −0.365 | 0.068 | (2,3,4) | |
403th | (2,0,−1) | −1.031 | −8.032 | 0.384 | 0.045 | (2,0,−1) | |
404th | (4,−3,1) | 4.000 | 17.018 | 1.519 | 0.019 | (4,−3,1) | |
405th | (4,2,5) | 2.903 | 15.919 | 0.265 | 0.127 | (4,2,5) | |
406th | (0,2,4) | 2.072 | 14.229 | −0.492 | 0.240 | (0,2,4) |
Satellite PRN | Time Limit (s) | Final Time (s) | |
---|---|---|---|
(0,−1,1) | (−1,−5,6) | ||
C24 | 21 | 39 | 21 |
C25 | 32 | 57 | 32 |
C38 | 16 | 29 | 16 |
C39 | 18 | 39 | 18 |
C41 | 14 | 38 | 14 |
C59 | 17 | 36 | 17 |
C60 | 22 | 35 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, X.; Sun, Y.; Wu, L.; Wang, K.; Zhao, K. A Cycle Slip Detection and Repair Method Based on Inertial Aiding for BDS Triple-Frequency Signals. Sensors 2023, 23, 5641. https://doi.org/10.3390/s23125641
Fu X, Sun Y, Wu L, Wang K, Zhao K. A Cycle Slip Detection and Repair Method Based on Inertial Aiding for BDS Triple-Frequency Signals. Sensors. 2023; 23(12):5641. https://doi.org/10.3390/s23125641
Chicago/Turabian StyleFu, Xiyu, Yongrong Sun, Ling Wu, Kaifeng Wang, and Kedong Zhao. 2023. "A Cycle Slip Detection and Repair Method Based on Inertial Aiding for BDS Triple-Frequency Signals" Sensors 23, no. 12: 5641. https://doi.org/10.3390/s23125641