YOLO-Weld: A Modified YOLOv5-Based Weld Feature Detection Network for Extreme Weld Noise
<p>The hardware experimental platform of the optical vision intelligent welding system.</p> "> Figure 2
<p>Sensor architecture and network topology diagram. (<b>a</b>) Sensor architecture. (<b>b</b>) Network topology diagram.</p> "> Figure 3
<p>Illustration of the position of the feature points of the different weld types. (<b>a</b>) Fillet joint. (<b>b</b>) Lap joint. (<b>c</b>) Butt joint. (<b>d</b>) Y-shape. (<b>e</b>) V-shape.</p> "> Figure 4
<p>Images acquired by the sensor. (<b>a</b>) Fillet joint. (<b>b</b>) Lap joint. (<b>c</b>) Butt joint. (<b>d</b>) Y-shape. (<b>e</b>) V-shape.</p> "> Figure 5
<p>Image data augmentation. (<b>a</b>) Original image. (<b>b</b>) Rotation. (<b>c</b>) Translation. (<b>d</b>) Scaling. (<b>e</b>) Vertical flipping. (<b>f</b>) Affine transformation. (<b>g</b>) Brightness adjustment. (<b>h</b>) WNGM.</p> "> Figure 6
<p>YOLOv5 network structure, with the network structure in red boxes and the specific implementation of the modules in the network in green boxes.</p> "> Figure 7
<p>YOLO-weld network architecture.</p> "> Figure 8
<p>RepVGG reparameterization process, divided into two steps. Step (<b>a</b>) is the fusion of the Conv layer with the BN layers. Step (<b>b</b>) is the fusion of Conv layers from different branches.</p> "> Figure 9
<p>The fusion process of the different tributary Conv layers, from top to bottom, represents the transformation process of 1 × 1 Conv, 3 × 3 Conv, and identity before summation.</p> "> Figure 10
<p>The network structure of the NAM, where, (<b>a</b>) for each input successively via the channel attention module and the hole attention module, (<b>b</b>) is the channel attention module structure and (<b>c</b>) is the spatial attention module structure.</p> "> Figure 11
<p>RD-Head structure diagram.</p> "> Figure 12
<p>Results of the prediction of feature points of weld images using YOLO-weld. (<b>a</b>) Fillet joint. (<b>b</b>) Lap joint. (<b>c</b>) Butt joint. (<b>d</b>) Y-shape. (<b>e</b>) V-shape.</p> "> Figure 13
<p>Variation curves of the validation set metrics with the number of training epochs. (<b>a</b>) Loss. (<b>b</b>) Precision. (<b>c</b>) Recall. (<b>d</b>) mAP.</p> "> Figure 14
<p>Images where feature point detection cannot be effectively performed.</p> "> Figure 15
<p>Euclidean distance distribution of predicted and marked positions for five weld types. (<b>a</b>) Fillet type. (<b>b</b>) Lap type. (<b>c</b>) Butt type. (<b>d</b>) Y type. (<b>e</b>) V type.</p> "> Figure 16
<p>Comparative experimental images of WNGM enhancement: (<b>a</b>) with WNGM enhancement; (<b>b</b>) without WNGM enhancement.</p> "> Figure 17
<p>Comparison of parameter variations over epochs in the test based on the VOC2007 dataset. (<b>a</b>) Total loss. (<b>b</b>) mAP 0.5.</p> "> Figure 18
<p>Comparison of YOLO-weld with other neural network models. (<b>a</b>) Faster RCNN. (<b>b</b>) SSD. (<b>c</b>) Center Net. (<b>d</b>) YOLOv4s. (<b>e</b>) YOLOv5s. (<b>f</b>) YOLOv7. (<b>g</b>) YOLO-weld.</p> "> Figure 19
<p>Reference and predicted point clouds collected from welding experiments.</p> "> Figure 20
<p>The YOLO-weld model is used to infer the error distribution of a V-shape weld in the world coordinate system.</p> ">
Abstract
:1. Introduction
2. Experiment System
3. Methodology
3.1. Data Processing
3.1.1. Setting of the Detection Targets
3.1.2. Data Collection
3.1.3. Data Augmentation
Algorithm 1 Welding noise generation method (WNGM) |
|
3.2. YOLOv5 Network Architecture
3.3. YOLO-Weld
3.3.1. RepVGG
3.3.2. NAM
3.3.3. RD-Head
4. Experiment and Analysis
4.1. Training of the Model
4.2. Training Results and Evaluation
4.3. Selecting the Base Model for the Experiment
4.4. Ablation Experiments
4.5. Comparative Experiments
4.6. Welding Experiment
5. Conclusions
- A welding noise generation method was proposed for data augmentation of welding images, effectively enhancing the model’s detection capability in extreme noise environments.
- The YOLO-weld network based on the YOLOv5 model was proposed. RepVGG was incorporated into the YOLOv5 network to improve the network detection speed while maintaining prediction accuracy. Furthermore, an efficient lightweight attention module, NAM, was introduced to enhance the network’s ability to sense feature points. In addition, the designed RD-Head employs lightweight operations to decouple the detection head, solving the spatial misalignment problem and improving detection accuracy.
- Through experiments, the proposed YOLO-Weld model achieved a recall rate of 99.0% on a custom dataset, an mAP 0.5:0.95 of 75.1%, and an inference speed of 104.5 Hz, outperforming both two-stage detection methods and conventional CNN approaches. It is capable of accurately predicting feature points in high-noise environments while meeting real-time detection requirements. The experiments demonstrated that the mean absolute error of the feature points in the image is 2.100 pixels, and the average error of the feature point detection in the world coordinate system is 0.114 mm, proving that the proposed model possesses sufficient detection accuracy and stability to meet the requirements of practical welding tasks.
6. Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, D.; Zhang, Z.; Du, F.; Zou, Y. Effect of arc voltage on process stability of bypass-coupling twin-wire indirect arc welding. Int. J. Mod. Phys. B 2022, 36, 2240053. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Y.; Peng, J. Advances techniques of the structured light sensing in intelligent welding robots: A review. Int. J. Adv. Manuf. Technol. 2020, 110, 1027–1046. [Google Scholar] [CrossRef]
- Wu, D.; An, Q.; Du, F.; Matsuda, K.; Tang, Y.; Zou, Y. Microstructure and corrosion resistance of stainless steel produced by bypass coupling twin-wire indirect arc additive manufacturing. Int. J. Adv. Manuf. Technol. 2022, 119, 2159–2172. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Y. A novel 3D seam extraction method based on multi-functional sensor for V-Type weld seam. IEEE Access 2019, 7, 182415–182424. [Google Scholar] [CrossRef]
- Wenji, L.; Zhenyu, G.; Xiao, J.; Li, L.; Jianfeng, Y. Research on the seam tracking of narrow gap P-GMAW based on arc sound sensing. Sens. Actuators A Phys. 2019, 292, 205–216. [Google Scholar] [CrossRef]
- Li, G.; Hong, Y.; Gao, J.; Hong, B.; Li, X. Welding seam trajectory recognition for automated skip welding guidance of a spatially intermittent welding seam based on laser vision sensor. Sensors 2020, 20, 3657. [Google Scholar] [CrossRef]
- Ma, Y.; Fan, J.; Deng, S.; Luo, Y.; Ma, X.; Jing, F.; Tan, M. Efficient and accurate start point guiding and seam tracking method for curve weld based on structure light. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, Y.; Zhou, W.; Chen, X. Real-time seam tracking control system based on line laser visions. Opt. Laser Technol. 2018, 103, 182–192. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Y.; Wang, H.; Liu, Y.; Zhang, B.; Hu, S. Research on Trajectory Recognition and Control Technology of Real-Time Tracking Welding. Sensors 2022, 22, 8546. [Google Scholar] [CrossRef]
- Cardellicchio, A.; Nitti, M.; Patruno, C.; Mosca, N.; di Summa, M.; Stella, E.; Renò, V. Automatic quality control of aluminium parts welds based on 3D data and artificial intelligence. J. Intell. Manuf. 2023, 2023, 1–20. [Google Scholar] [CrossRef]
- Baek, D.; Moon, H.S.; Park, S.-H. In-process prediction of weld penetration depth using machine learning-based molten pool extraction technique in tungsten arc welding. J. Intell. Manuf. 2022, 2022, 1–17. [Google Scholar] [CrossRef]
- Wang, N.; Zhong, K.; Shi, X.; Zhang, X. A robust weld seam recognition method under heavy noise based on structured-light vision. Robot. Comput.-Integr. Manuf. 2020, 61, 101821. [Google Scholar] [CrossRef]
- Zeng, J.; Cao, G.; Li, W.; Sun, J.; Lv, J.; Chen, B. Feature point extraction based on contour detection and corner detection for weld seam. J. Phys. Conf. Ser. 2018, 1074, 012161. [Google Scholar] [CrossRef]
- Zou, Y.; Chen, X.; Gong, G.; Li, J. A seam tracking system based on a laser vision sensor. Measurement 2018, 127, 489–500. [Google Scholar] [CrossRef]
- He, Y.; Xu, Y.; Chen, Y.; Chen, H.; Chen, S. Weld seam profile detection and feature point extraction for multi-pass route planning based on visual attention model. Robot. Comput.-Integr. Manuf. 2016, 37, 251–261. [Google Scholar] [CrossRef]
- Fan, J.; Deng, S.; Ma, Y.; Zhou, C.; Jing, F.; Tan, M. Seam feature point acquisition based on efficient convolution operator and particle filter in GMAW. IEEE Trans. Ind. Inform. 2020, 17, 1220–1230. [Google Scholar] [CrossRef]
- Du, R.; Xu, Y.; Hou, Z.; Shu, J.; Chen, S. Strong noise image processing for vision-based seam tracking in robotic gas metal arc welding. Int. J. Adv. Manuf. Technol. 2019, 101, 2135–2149. [Google Scholar] [CrossRef]
- Xiao, R.; Xu, Y.; Hou, Z.; Chen, C.; Chen, S. An adaptive feature extraction algorithm for multiple typical seam tracking based on vision sensor in robotic arc welding. Sens. Actuators A Phys. 2019, 297, 111533. [Google Scholar] [CrossRef]
- Dong, Z.; Mai, Z.; Yin, S.; Wang, J.; Yuan, J.; Fei, Y. A weld line detection robot based on structure light for automatic NDT. Int. J. Adv. Manuf. Technol. 2020, 111, 1831–1845. [Google Scholar] [CrossRef]
- Zou, Y.; Chen, T.; Chen, X.; Li, J. Robotic seam tracking system combining convolution filter and deep reinforcement learning. Mech. Syst. Signal Process. 2022, 165, 108372. [Google Scholar] [CrossRef]
- Wu, K.; Wang, T.; He, J.; Liu, Y.; Jia, Z. Autonomous seam recognition and feature extraction for multi-pass welding based on laser stripe edge guidance network. Int. J. Adv. Manuf. Technol. 2020, 111, 2719–2731. [Google Scholar] [CrossRef]
- Zou, Y.; Wei, X.; Chen, J. Conditional generative adversarial network-based training image inpainting for laser vision seam tracking. Opt. Lasers Eng. 2020, 134, 106140. [Google Scholar] [CrossRef]
- Yang, L.; Fan, J.; Huo, B.; Li, E.; Liu, Y. Image denoising of seam images with deep learning for laser vision seam tracking. IEEE Sens. J. 2022, 22, 6098–6107. [Google Scholar] [CrossRef]
- Lu, J.; Yang, A.; Chen, X.; Xu, X.; Lv, R.; Zhao, Z. A Seam Tracking Method Based on an Image Segmentation Deep Convolutional Neural Network. Metals 2022, 12, 1365. [Google Scholar] [CrossRef]
- Liu, Z.; Gu, X.; Chen, J.; Wang, D.; Chen, Y.; Wang, L. Automatic recognition of pavement cracks from combined GPR B-scan and C-scan images using multiscale feature fusion deep neural networks. Autom. Constr. 2023, 146, 104698. [Google Scholar] [CrossRef]
- Gai, R.; Chen, N.; Yuan, H. A detection algorithm for cherry fruits based on the improved YOLO-v4 model. Neural Comput. Appl. 2021, 35, 13895–13906. [Google Scholar] [CrossRef]
- Sha, J.; Wang, J.; Hu, H.; Ye, Y.; Xu, G. Development of an Accurate and Automated Quality Inspection System for Solder Joints on Aviation Plugs Using Fine-Tuned YOLOv5 Models. Appl. Sci. 2023, 13, 5290. [Google Scholar] [CrossRef]
- Wu, W.; Liu, H.; Li, L.; Long, Y.; Wang, X.; Wang, Z.; Li, J.; Chang, Y. Application of local fully Convolutional Neural Network combined with YOLO v5 algorithm in small target detection of remote sensing image. PloS ONE 2021, 16, e0259283. [Google Scholar] [CrossRef]
- Yao, J.; Qi, J.; Zhang, J.; Shao, H.; Yang, J.; Li, X. A real-time detection algorithm for Kiwifruit defects based on YOLOv5. Electronics 2021, 10, 1711. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; Kwon, Y. ultralytics/yolov5: V6. 1-TensorRT TensorFlow edge TPU and OpenVINO export and inference. Zenodo 2022, 2, 2. [Google Scholar]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12993–13000. [Google Scholar]
- Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. Repvgg: Making vgg-style convnets great again. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13733–13742. [Google Scholar]
- Liu, Y.; Shao, Z.; Teng, Y.; Hoffmann, N. NAM: Normalization-based attention module. arXiv 2021, arXiv:2111.12419. [Google Scholar]
- Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A new backbone that can enhance learning capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 390–391. [Google Scholar]
- Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Song, G.; Liu, Y.; Wang, X. Revisiting the sibling head in object detector. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 11563–11572. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Zhou, X.; Wang, D.; Krähenbühl, P. Objects as points. arXiv 2019, arXiv:1904.07850. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
Equipment | Model | Equipment | Model |
---|---|---|---|
Robot | AUBO I10 | Vision sensor | Self-developed |
Welding machine | AOTAI MIG-500RP | Welding material | Q235 |
Welding feeder | AOTAI CS-501-500 | Shielding gas | Ar |
Parameters | Values | Parameters | Values |
---|---|---|---|
Input size | 640 × 640 | Versions | v6.1 |
Model depth multiple | 0.33 | Params | 7.05 M |
Layer channel multiple | 0.50 | FLOPs | 16.1 GFLOPs |
Precision | Recall | mAP 0.5 | mAP 0.5:0.95 | Time | FPS |
---|---|---|---|---|---|
(%) | (%) | (%) | (%) | (ms) | (Hz) |
99.0 | 98.3 | 99.1 | 75.1 | 9.57 | 104.5 |
Type | E-MAE | X-MAE | Y-MAE | E-RMSE | X-RMSE | Y-RMSE |
---|---|---|---|---|---|---|
(pixel) | (pixel) | (pixel) | (pixel) | (pixel) | (pixel) | |
All | 2.100 | 1.437 | 1.207 | 3.099 | 2.342 | 2.029 |
Fillet | 2.161 | 1.364 | 1.371 | 2.831 | 2.245 | 1.725 |
Lap | 1.766 | 1.273 | 0.972 | 2.492 | 2.086 | 1.363 |
Butt | 1.968 | 1.301 | 1.153 | 3.155 | 2.274 | 2.187 |
Y | 2.468 | 1.752 | 1.363 | 3.484 | 2.724 | 2.172 |
V | 1.836 | 1.211 | 1.101 | 2.700 | 1.869 | 1.949 |
Method | Parameter | mAP 0.5:0.95 | E-MAE | E-RMSE | FPS |
---|---|---|---|---|---|
(%) | (pixel) | (pixel) | (Hz) | ||
YOLOv5n | 1.78 | 72.1 | 2.325 | 4.181 | 93.3 |
YOLOv5s | 7.05 | 74.0 | 2.202 | 3.586 | 79.9 |
YOLOv5m | 21.9 | 74.3 | 2.115 | 3.527 | 67.8 |
YOLOv5l | 46.2 | 75.0 | 2.075 | 3.365 | 56.6 |
Method | With WNGM | mAP 0.5:0.95 | E-MAE | E-RMSE |
---|---|---|---|---|
(%) | (pixel) | (pixel) | ||
YOLO-weld | Yes | 75.1 | 2.100 | 3.099 |
YOLO-weld | No | 74.1 | 2.103 | 3.318 |
Method | mAP 0.5:0.95 | E-MAE | E-RMSE | FPS |
---|---|---|---|---|
(%) | (pixel) | (pixel) | (Hz) | |
YOLOv5s | 74.0 | 2.202 | 3.586 | 79.9 |
+RepVGG | 72.7 | 2.212 | 3.671 | 124.8 |
+RepVGG+NAM | 73.1 | 2.187 | 3.384 | 121.9 |
+RepVGG+NAM+RD-Head | 75.1 | 2.100 | 3.099 | 104.5 |
Method | Precision | Recall | mAP 0.5 | mAP 0.5:0.95 | FPS |
---|---|---|---|---|---|
(%) | (%) | (%) | (%) | (Hz) | |
YOLOv5s | 64.3 | 55.5 | 57.3 | 32.1 | 87.4 |
YOLO-weld | 67.7 | 54.8 | 58.9 | 35.6 | 112.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, A.; Fan, Z.; Li, A.; Le, Q.; Wu, D.; Du, F. YOLO-Weld: A Modified YOLOv5-Based Weld Feature Detection Network for Extreme Weld Noise. Sensors 2023, 23, 5640. https://doi.org/10.3390/s23125640
Gao A, Fan Z, Li A, Le Q, Wu D, Du F. YOLO-Weld: A Modified YOLOv5-Based Weld Feature Detection Network for Extreme Weld Noise. Sensors. 2023; 23(12):5640. https://doi.org/10.3390/s23125640
Chicago/Turabian StyleGao, Ang, Zhuoxuan Fan, Anning Li, Qiaoyue Le, Dongting Wu, and Fuxin Du. 2023. "YOLO-Weld: A Modified YOLOv5-Based Weld Feature Detection Network for Extreme Weld Noise" Sensors 23, no. 12: 5640. https://doi.org/10.3390/s23125640
APA StyleGao, A., Fan, Z., Li, A., Le, Q., Wu, D., & Du, F. (2023). YOLO-Weld: A Modified YOLOv5-Based Weld Feature Detection Network for Extreme Weld Noise. Sensors, 23(12), 5640. https://doi.org/10.3390/s23125640