Autonomous Robots for Services—State of the Art, Challenges, and Research Areas
<p>The trend in the volume of scientific literature pertaining to autonomous systems over time.</p> "> Figure 2
<p>Country classification of the level of scientific interest in the field of autonomous systems.</p> "> Figure 3
<p>Pepper robot.</p> "> Figure 4
<p>Scripting general scheme.</p> "> Figure 5
<p>Preprocess of a Kinect data frame.</p> "> Figure 6
<p>The trend in the volume of scientific literature pertaining to assistive robots over time.</p> "> Figure 7
<p>Country classification of the level of scientific interest in assistive robots.</p> "> Figure 8
<p>Transposition of characteristics.</p> "> Figure 9
<p>The trend in the volume of scientific literature pertaining to autonomous vehicles over time.</p> "> Figure 10
<p>Country classification of the level of scientific interest in autonomous vehicles.</p> "> Figure 11
<p>Carry robot.</p> "> Figure 12
<p>The trend in the volume of scientific literature pertaining to autonomous carriers over time.</p> "> Figure 13
<p>Country classification of the level of scientific interest in autonomous carriers.</p> "> Figure 14
<p>Comparison of classic robots with autonomous robots.</p> "> Figure 15
<p>The trend in the volume of scientific literature pertaining to autonomous manipulators over time.</p> "> Figure 16
<p>Country classification of the level of scientific interest in autonomous manipulators.</p> ">
Abstract
:1. Introduction
2. Assistive Robots
- The calculation of direction vectors using spatial coordinates (points 1–20 from Figure 5) in order to calculate the angles of the arcs;
- The initial spatial coordinates of the arm ((x1, y1, z1) … (x4, y4, z4)) were used in order to extract and compute the rotation and roll angles of the elbow and shoulder (SC1, SC2, SC3, SC4), afterwards the basis vector is computed (A1, A2, A3, …, A8);
- A certain vector is generated for each frame given by the Kinect sensor, a vector made from the following angles: left/right shoulder roll, left/right elbow roll, left/right shoulder roll, and left/right elbow roll;
- The last step contains a movement file for each signature.
3. Autonomous Vehicles
- The absence of a high-level testing method and theory has limited their adoption;
- Cities have a dynamic environment which is inadequate to the participation of these vehicles in traffic;
- The infrastructure is not sufficiently developed to the extent that adoption is not a problem;
- The laws specific to autonomous driving need to be revised and clearly established according to new technologies [82].
4. Carry
5. Autonomous Manipulator
6. Research Challenges
- The development of methods to ensure safe operation in crowded and complex environments while simultaneously modeling robot interaction with other robots’ interactions;
- New autonomous learning solutions need to be considered in terms of decision making, and subsequently evaluated and implemented;
- There is a need for development in terms of fleet management, the quality of services, and online performance;
- The mode of operation in adverse weather conditions needs to be developed;
- There is a need for the verification of methods for safety assessments;
- It is necessary that perception and planning are closely linked in terms of the direct propagation of uncertainty.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hockstein, N.G.; Gourin, C.G.; Faust, R.A.; Terris, D.J. A history of robots: From science fiction to surgical robotics. J. Robot. Surg. 2007, 1, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Leite, I.; Martinho, C.; Paiva, A. Social robots for long-term interaction: A survey. Int. J. Soc. Robot. 2013, 5, 291–308. [Google Scholar] [CrossRef]
- Ben-Ari, M.; Mondada, F. Elements of Robotics, 1st ed.; Springer Nature: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Yang, S.; Mao, X.; Chen, Y.; Yang, S. A Multi-Agent Organization Approach for Developing Social-Technical Software of Autonomous Robots. In Proceedings of the Social Computing: Second International Conference of Young Computer Scientists, Engineers and Educators, ICYCSEE 2016, Harbin, China, 20–22 August 2016; Proceedings, Part I 2. Springer: Berlin/Heidelberg, Germany, 2016; pp. 24–38. [Google Scholar]
- Legashev, L.V.; Letuta, T.V.; Polezhaev, P.N.; Shukhman, A.E.; Ushakov, Y.A. Monitoring, certification and verification of autonomous robots and intelligent systems: Technical and legal approaches. Procedia Comput. Sci. 2019, 150, 544–551. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Liu, H.; Kan, Z. Skill transfer learning for autonomous robots and human–robot cooperation: A survey. Robot. Auton. Syst. 2020, 128, 103–515. [Google Scholar] [CrossRef]
- Barton, A.; Volna, E. Control of autonomous robot using neural networks. In AIP Conference Proceedings, 2nd ed.; Simos, T., Tsitouras, C., Eds.; AIP Publishing LLC: Rhodes, Greece, 2017; p. 1863. [Google Scholar]
- Kiumarsi, B.; Vamvoudakis, K.G.; Modares, H.; Lewis, F.L. Optimal and autonomous control using reinforcement learning: A survey. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 2042–2062. [Google Scholar] [CrossRef] [PubMed]
- Burgard, W.; Valada, A.; Radwan, N.; Naseer, T.; Zhang, J.; Vertens, J.; Mees, O.; Eitel, A.; Oliveira, G. Perspectives on deep multimodel robot learning. In Proceedings of the Robotics Research: The 18th International Symposium ISRR, Puerto Varas, Chile, 11–14 December 2017; Siciliano, B., Khatib, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 18, pp. 12–24. [Google Scholar]
- Kondratenko, Y.P.; Roshanineshat, A.; Simon, D. Safe Navigation of an Autonomous Robot in Dynamic and Unknown Environments. In Recent Developments in Automatic Control Systems; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Feil-Seifer, D.; Mataric, M.J. Defining socially assistive robotics. In Proceedings of the International Conference on Rehabilitation Robotics 2005, Chicago, IL, USA, 28 June–1 July 2005; Volume 9, pp. 465–468. [Google Scholar]
- Burgar, C.G.; Lum, P.S.; Shor, P.C.; Van der Loos, H.M. Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience. J. Rehabil. Res. Dev. 2000, 37, 663–674. [Google Scholar]
- Dubowsky, S.; Genot, F.; Godding, S.; Kozono, H.; Skwersky, A.; Yu, H.; Yu, L.S. PAMM-A robotic aid to the elderly for mobility assistance and monitoring: A “helping-hand” for the elderly. In Proceedings of the 2000 ICRA, Millennium Conference, IEEE International Conference on Robotics and Automation 2000, San Francisco, CA, USA, 24–28 April 2000; Volume 1, pp. 570–576. [Google Scholar]
- Harwin, W.S.; Ginige, A.; Jackson, R.D. A robot workstation for use in education of the physically handicapped. IEEE Trans. Biomed. Eng. 1998, 35, 127–131. [Google Scholar] [CrossRef]
- Kahn, L.E.; Averbuch, M.; Rymer, W.Z.; Reinkensmeyer, D.J. Comparison of robot-assisted reaching to free reaching in promoting recovery from chronic stroke. In Proceedings of the International Conference on Rehabilitation Robotics 2001, Evry, France, 25–27 April 2001; pp. 30–55. [Google Scholar]
- Roy, N.; Baltus, G.; Fox, D.; Gemperle, F.; Goetz, J.; Hirsch, T.; Margaritis, D.; Montemerlo, M.; Pineau, J.; Schulte, J.; et al. Towards personal service robots for the elderly. In Proceedings of the Workshop on Interactive Robots and Entertainment (WIRE 2000) 2000, Pittsburgh, USA, 30 April–1 May 2000; Volume 25, p. 184. [Google Scholar]
- Plaisant, C.; Druin, A.; Lathan, C.; Dakhane, K.; Edwards, K.; Vice, J.M.; Montemayor, J. A storytelling robot for pediatric rehabilitation. In Proceedings of the Fourth International ACM Conference on Assistive Technologies, Arlington, VA, USA, 13–15 November 2000; Association for Computing Machinery: New York, NY, USA, 2000. [Google Scholar]
- Aigner, P.; McCarragher, B. Shared control framework applied to a robotic aid for the blind. IEEE Control. Syst. Mag. 1999, 19, 40–46. [Google Scholar]
- Glover, J.; Holstius, D.; Manojlovich, M.; Montgomery, K.; Powers, A.; Wu, J.; Kiesler, S.; Matthews, J.; Thrun, S. A Robotically-Augmented Walker for Older Adults; Computer Science Department, Carnegie Mellon University: Pittsburgh, PA, USA, 2003. [Google Scholar]
- Simpson, R.; Levine, S. Development and evaluation of voice control for a smart wheelchair. In Proceedings of the Annual RESNA Conference 1997, Orlando, FL, USA, 24–28 June 1997; pp. 417–419. [Google Scholar]
- Graf, B.; Hans, A.; Kubacki, J.; Schraft, R.D. Robotic home assistant care-o-bot II. In Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society, Engineering in Medicine and Biology, Houston, TX, USA, 23–26 October 2002; Volume 3, pp. 2343–2344. [Google Scholar]
- Giménez, A.; Balaguer, C.; Sabatini, A.M.; Genovese, V. The MATS robotic system to assist disabled people in their home environments. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems IROS, Las Vegas, NV, USA, 27–31 October 2003; Volume 4, pp. 2612–2617. [Google Scholar]
- Kawamura, K.; Bagchi, S.; Iskarous, M.; Bishay, M. Intelligent robotic systems in service of the disabled. IEEE Trans. Rehabil. Eng. 1995, 3, 14–21. [Google Scholar] [CrossRef]
- Louie, W.Y.G.; Vaquero, T.; Nejat, G.; Beck, J.C. An autonomous assistive robot for planning, scheduling and facilitating multi-user activities. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 5292–5298. [Google Scholar]
- Pathi, S.K.; Kiselev, A.; Loutfi, A. Detecting Groups and Estimating F-Formations for Social Human–Robot Interactions. Multimodal Technol. Interact. 2022, 6, 18. [Google Scholar] [CrossRef]
- Fussell, S.R.; Kiesler, S.; Setlock, L.D.; Yew, V. How people anthropomorphize robots. In Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction, Amsterdam, The Netherlands, 12–15 March 2008; Association for Computing Machinery: New York, NY, USA, 2008; pp. 145–152. [Google Scholar]
- Goodrich, M.A.; Schultz, A.C. Human–robot interaction: A survey. Found. Trends Hum. Comput. Interact. 2008, 1, 203–275. [Google Scholar] [CrossRef]
- Hancock, P.A.; Billings, D.R.; Schaefer, K.E.; Chen, J.Y.; De Visser, E.J.; Parasuraman, R. A meta-analysis of factors affecting trust in human-robot interaction. Hum. Factors 2011, 53, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; Peng, W.; Jin, S.A.; Yan, C. Can robots manifest personality?: An empirical test of personality recognition, social responses, and social presence in human–robot interaction. J. Commun. 2006, 56, 754–772. [Google Scholar] [CrossRef]
- Wong, C.; Yang, E.; Yan, X.T.; Gu, D. An optimal approach to anytime task and path planning for autonomous mobile robots in dynamic environments. In Towards Autonomous Robotic Systems, Proceedings of the Annual Conference, TAROS 2019, London, UK, 3–5 July 2019, 2nd ed.; Althoefer, K., Konstantinova, J., Zhang, K., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 20, pp. 155–166. [Google Scholar]
- AlAttar, A.; Rouillard, L.; Kormushev, P. Autonomous air-hockey playing cobot using optimal control and vision-based bayesian tracking. In Towards Autonomous Robotic Systems, Proceedings of the Annual Conference, TAROS 2019, London, UK, 3–5 July 2019, 2nd ed.; Althoefer, K., Konstantinova, J., Zhang, K., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 20, pp. 358–369. [Google Scholar]
- Edelkamp, S.; Yu, Z. Watchman Routes for Robot Inspection. In Towards Autonomous Robotic Systems, Proceedings of the Annual Conference, TAROS 2019, London, UK, 3–5 July 2019, 2nd ed.; Althoefer, K., Konstantinova, J., Zhang, K., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 20, pp. 179–190. [Google Scholar]
- Sun, N.; Yang, E.; Corney, J.; Chen, Y. Semantic path planning for indoor navigation and household tasks. In Towards Autonomous Robotic Systems, Proceedings of the Annual Conference, TAROS 2019, London, UK, 3–5 July 2019, 2nd ed.; Althoefer, K., Konstantinova, J., Zhang, K., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 20, pp. 191–201. [Google Scholar]
- Coşar, S.; Fernandez-Carmona, M.; Agrigoroaie, R.; Pages, J.; Ferland, F.; Zhao, F.; Yue, S.; Bellotto, N.; Tapus, A. ENRICHME: Perception and Interaction of an Assistive Robot for the Elderly at Home. Int. J. Soc. Robot. 2020, 12, 779–805. [Google Scholar] [CrossRef]
- Leigh, A.; Pineau, J.; Olmedo, N.; Zhang, H. Person tracking and following with 2d laser scanners. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 726–733.
- Ahmed, A.; Azam, A.; Ihsan, U.B.; Syed, S.N.; Uddin, R. Assistive mobile robot for industrial and academic applications. In Proceedings of the 2020 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 14–18 January 2020. [Google Scholar]
- Kivrak, H.; Cakmak, F.; Kose, H.; Yavuz, S. Social navigation framework for assistive robots in human inhabited unknown environments. Eng. Sci. Technol. Int. J. 2021, 24, 284–298. [Google Scholar] [CrossRef]
- Ge, B.; Park, H.W.; Howard, A.M. Identifying engagement from joint kinematics data for robot therapy prompt interventions for children with autism spectrum disorder. In Social Robotics, Proceedings of the ICSR 2016, Kansas City, MO, USA, 1–3 November 2016, 4th ed.; Agah, A., Cabibihan, J.-J., Howard, A., Salichs, M.A., He, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 8, pp. 531–540. [Google Scholar]
- Agah, A.; Cabibihan, J.J.; Howard, A.M.; Salichs, M.A.; He, H. Social Robotics. In Proceedings of the 8th International Conference, ICSR 2016, Kansas City, MO, USA, 1–3 November 2016. [Google Scholar]
- Meng, L.; De Silva, C.W.; Zhang, J. 3D visual SLAM for an assistive robot in indoor environments using RGB-D cameras. In Proceedings of the International Conference on Computer Science & Education 2014, Vancouver, BC, Canada, 22–24 August 2014; pp. 32–37. [Google Scholar]
- Rakhimkul, S.; Kim, A.; Pazylbekov, A.; Shintemirov, A. Autonomous object detection and grasping using deep learning for design of an intelligent assistive robot manipulation system. In Proceedings of the International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 3962–3968. [Google Scholar]
- Withanage, K.I.; Lee, I.; Brinkworth, R.; Mackintosh, S.; Thewlis, D. Fall recovery subactivity recognition with RGB-D cameras. IEEE Trans. Ind. Inform. 2016, 6, 2312–2320. [Google Scholar] [CrossRef]
- Boccanfuso, L.; O’Kane, J.M. Adaptive robot design with hand and face tracking for use in autism therapy. In Proceedings of the Social Robotics: Second International Conference on Social Robotics, ICSR 2010, Singapore, 23–24 November 2010; pp. 265–274. [Google Scholar]
- Canal, G.; Escalera, S.; Angulo, C. A real-time human-robot interaction system based on gestures for assistive scenarios. Comput. Vis. Image Underst. 2016, 149, 65–77. [Google Scholar] [CrossRef]
- Cilmi, B.; Mercimek, M. Design and implementation of real time face tracking humanoid robot. In Proceedings of the International Conference on Control Engineering Information Technology (CEIT), Istanbul, Turkey, 25–27 October 2018; Volume 6, pp. 1–6. [Google Scholar]
- Rossi, S.; Ercolano, G.; Raggioli, L.; Valentino, M.; Di Napoli, C. A Framework for Personalized and Adaptive Socially Assistive Robotics. In Proceedings of the WOA, Workshop “From objects to Agents”, Palermo, Italy, 28–29 June 2018; Volume 19, pp. 90–95. [Google Scholar]
- Massardi, J.; Gravel, M.; Beaudry, É. Parc: A plan and activity recognition component for assistive robots. In Proceedings of the International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 3025–3031. [Google Scholar]
- Bustamante, S.; Quere, G.; Leidner, D.; Vogel, J.; Stulp, F. CATs: Task Planning for Shared Control of Assistive Robots with Variable Autonomy. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar]
- Elbeleidy, S.; Mott, T.; Williams, T. Practical, ethical, and overlooked: Teleoperated socially assistive robots in the quest for autonomy. In Proceedings of the 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Sapporo, Japan, 7–10 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 577–587. [Google Scholar]
- Fang, N.; Zhang, C.; Sankaran, S.; Ren, S. Role of Socially Assistive Robots in Reducing Anxiety and Preserving Autonomy in Children. In Proceedings of the 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Sapporo, Japan, 7–10 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 754–759. [Google Scholar]
- Papadopoulos, I.; Lazzarino, R.; Miah, S.; Weaver, T.; Thomas, B.; Koulouglioti, C. A systematic review of the literature regarding socially assistive robots in pre-tertiary education. Comput. Educ. 2020, 155, 103924. [Google Scholar] [CrossRef]
- Christoforou, E.G.; Avgousti, S.; Ramdani, N.; Novales, C.; Panayides, A.S. The upcoming role for nursing and assistive robotics: Opportunities and challenges ahead. Front. Digit. Health 2020, 2, 585656. [Google Scholar] [CrossRef]
- Ortiz, J.S.; Palacios-Navarro, G.; Andaluz, V.H.; Guevara, B.S. Virtual reality-based framework to simulate control algorithms for robotic assistance and rehabilitation tasks through a standing wheelchair. Sensors 2021, 21, 5083. [Google Scholar] [CrossRef]
- Gürpınar, C.; Uluer, P.; Akalın, N.; Köse, H. Sign recognition system for an assistive robot sign tutor for children. Int. J. Soc. Robot. 2020, 12, 355–369. [Google Scholar] [CrossRef]
- Serban, A.C.; Poll, E.; Visser, J. A standard driven software architecture for fully autonomous vehicles. In Proceedings of the International Conference on Software Architecture Companion (ICSA-C), Seattle, WA, USA, 30 April–4 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 120–127. [Google Scholar]
- Staron, M. Automotive Software Architectures; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Garlan, D. Software architecture: A roadmap. In Proceedings of the Conference on the Future of Software Engineering, Limerick Ireland, 4–11 June 2000; pp. 91–101. [Google Scholar]
- Borroni-Bird, C.E.; Verbrugge, M.W. Transportation: Fully autonomous vehicles. In Fundamentals of Materials for Energy and Environmental Sustainability; Cambridge University Press: Cambridge, UK, 2011; Volume 462. [Google Scholar]
- Amanatidis, T.; Langdon, P.; Clarkson, P.J. Needs and expectations for fully autonomous vehicle interfaces. In Proceedings of the Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, Chicago, IL, USA, 5–8 March 2018; Association for Computing Machinery: New York, NY, USA, 2018; Volume 18, pp. 51–52. [Google Scholar]
- Favarò, F.M.; Nader, N.; Eurich, S.O.; Tripp, M.; Varadaraju, N. Examining accident reports involving autonomous vehicles in California. PLoS ONE 2017, 12, e0184952. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Garcia, R.O.; Aycard, O. Multiple sensor fusion and classification for moving object detection and tracking. IEEE Trans. Intell. Transp. Syst. 2015, 17, 525–534. [Google Scholar] [CrossRef]
- Maldonado-Bascón, S.; Lafuente-Arroyo, S.; Gil-Jimenez, P.; Gómez-Moreno, H.; López-Ferreras, F. Road-sign detection and recognition based on support vector machines. IEEE Trans. Intell. Transp. Syst. 2007, 8, 264–278. [Google Scholar] [CrossRef]
- Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L.D.; Monfort, M.; Muller, U.; Zhang, J.; et al. End to end learning for self-driving cars. arXiv 2016, arXiv:1604.07316. [Google Scholar]
- Argall, B.D.; Chernova, S.; Veloso, M.; Browning, B. A survey of robot learning from demonstration. Robot. Auton. Syst. 2009, 57, 469–483. [Google Scholar] [CrossRef]
- Lu, G.; Nie, Y.M.; Liu, X.; Li, D. Trajectory-based traffic management inside an autonomous vehicle zone. Transp. Res. Part B Methodol. 2019, 120, 76–98. [Google Scholar] [CrossRef]
- Parra, I.; Sotelo, M.A.; Llorca, D.F.; Ocana, M. Robust visual odometry for vehicle localization in urban environments. Robotica 2010, 29, 441–452. [Google Scholar] [CrossRef]
- Stern, R.E.; Cui, S.; Delle Monache, M.L.; Bhadani, R.; Bunting, M.; Churchill, M.; Hamilton, N.; Pohlmann, H.; Wu, F.; Piccoli, B.; et al. Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments. Transp. Res. Part C: Emerg. Technol. 2018, 89, 205–221. [Google Scholar] [CrossRef]
- Chen, B.; Sun, D.; Zhou, J.; Wong, W.; Ding, Z. A future intelligent traffic system with mixed autonomous vehicles and human-driven vehicles. Inf. Sci. 2020, 529, 59–72. [Google Scholar] [CrossRef]
- Delmerico, J.; Mintchev, S.; Giusti, A.; Gromov, B.; Melo, K.; Horvat, T.; Cadea, C.; Hutter, M.; Ijspeert, A.; Floreano, D.; et al. The current state and future outlook of rescue robotics. J. Field Robot. 2019, 36, 1171–1191. [Google Scholar] [CrossRef]
- Gao, Y.; Chien, S. Review on space robotics: Toward top-level science through space exploration. Sci. Robot. 2017, 2, 5074. [Google Scholar] [CrossRef] [PubMed]
- Rubio, F.; Valero, F.; Llopis-Albert, C. A review of mobile robots: Concepts, methods, theoretical framework, and applications. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419839596. [Google Scholar] [CrossRef]
- Zhao, J.; Liang, B.; Chen, Q. The key technology toward the self-driving car. Int. J. Intell. Unmanned Syst. 2018, 6, 2–20. [Google Scholar] [CrossRef]
- Ahmed, H.U.; Huang, Y.; Lu, P.; Bridgelall, R. Technology developments and impacts of connected and autonomous vehicles: An overview. Smart Cities 2022, 5, 382–404. [Google Scholar] [CrossRef]
- Parekh, D.; Poddar, N.; Rajpurkar, A.; Chahal, M.; Kumar, N.; Joshi, G.P.; Cho, W. A review on autonomous vehicles: Progress, methods and challenges. Electronics 2022, 11, 2162. [Google Scholar] [CrossRef]
- Jebamikyous, H.H.; Kashef, R. Autonomous vehicles perception (avp) using deep learning: Modeling, assessment, and challenges. IEEE Access 2022, 10, 10523–10535. [Google Scholar] [CrossRef]
- Gelauff, G.; Ossokina, I.; Teulings, C. Spatial and welfare effects of automated driving: Will cities grow, decline or both? Transp. Res. Part A Policy Pract. 2019, 121, 277–294. [Google Scholar] [CrossRef]
- Ebert, F.; Fassbender, D.; Naujoks, B.; Wuensche, H.J. Robust long-range teach-and-repeat in non-urban environments. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- ISO I. 26262-3; Road vehicles-Functional Safety-Part 3: Concept Phase, English. ISO: London, UK, 2011.
- Van Brummelen, J.; O’Brien, M.; Gruyer, D.; Najjaran, H. Autonomous vehicle perception: The technology of today and tomorrow. Transp. Res. Part C Emerg. Technol. 2018, 89, 384–406. [Google Scholar] [CrossRef]
- Banks, V.A.; Plant, K.L.; Stanton, N.A. Driver error or designer error: Using the Perceptual Cycle Model to explore the circumstances surrounding the fatal Tesla crash on 7th May 2016. Saf. Sci. 2018, 108, 278–285. [Google Scholar] [CrossRef]
- Eskandarian, A.; Wu, C.; Sun, C. Research advances and challenges of autonomous and connected ground vehicles. IEEE Trans. Intell. Transp. Syst. 2019, 22, 683–711. [Google Scholar] [CrossRef]
- Dong, L.; Sun, D.; Han, G.; Li, X.; Hu, Q.; Shu, L. Velocity-free localization of autonomous driverless vehicles in underground intelligent mines. IEEE Trans. Veh. Technol. 2020, 69, 9292–9303. [Google Scholar] [CrossRef]
- Färber, B. Communication and communication problems between autonomous vehicles and human drivers. In Autonomous Driving: Technical, Legal and Social Aspects; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Lotfi, M.; Osório, G.J.; Javadi, M.S.; Ashraf, A.; Zahran, M.; Samih, G.; Catalão, J.P. A Dijkstra-inspired graph algorithm for fully autonomous tasking in industrial applications. IEEE Trans. Ind. Appl. 2021, 57, 5448–5460. [Google Scholar] [CrossRef]
- D’Andrea, R. Guest editorial: A revolution in the warehouse: A retrospective on kiva systems and the grand challenges ahead. IEEE Trans. Autom. Sci. Eng. 2012, 9, 638–639. [Google Scholar] [CrossRef]
- Draganjac, I.; Petrović, T.; Miklić, D.; Kovačić, Z.; Oršulić, J. Highly-scalable traffic management of autonomous industrial transportation systems. Robot. Comput. Integr. Manuf. 2020, 63, 101–915. [Google Scholar] [CrossRef]
- Duinkerken, M.B.; van der Zee, M.; Lodewijks, G. Dynamic free range routing for automated guided vehicles. In Proceedings of the 2006 IEEE International Conference on Networking, Sensing and Control, Ft Lauderdale, FL, USA, 23–25 April 2006; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2006; pp. 312–317. [Google Scholar]
- Datta, S.; Ray, R.; Banerji, D. Development of autonomous mobile robot with manipulator for manufacturing environment. Int. J. Adv. Manuf. Technol. 2008, 38, 536–542. [Google Scholar] [CrossRef]
- Melhuish, C.; Ieropoulos, I.; Greenman, J.; Horsfield, I. Energetically autonomous robots: Food for thought. Auton. Robot. 2006, 21, 187–198. [Google Scholar] [CrossRef]
- Jung, D.; Zelinsky, A. Grounded symbolic communication between heterogeneous cooperating robots. Auton. Robot. 2000, 8, 269–292. [Google Scholar] [CrossRef]
- Groβ, R.; Dorigo, M. Evolution of solitary and group transport behaviors for autonomous robots capable of self-assembling. Adapt. Behav. 2006, 16, 285–305. [Google Scholar] [CrossRef]
- Stilwell, D.J.; Bay, J.S. Toward the development of a material transport system using swarms of ant-like robots. In Proceedings of the IEEE International Conference on Robotics and Automation 1993, Atlanta, GA, USA, 2–6 May 1993. [Google Scholar]
- Sugar, T.G.; Kumar, V. Control of cooperating mobile manipulators. Control. Coop. Mob. Manip. 2002, 18, 94–103. [Google Scholar] [CrossRef]
- Jeong, D.H.; Park, J.I.; Kim, Y.T. Study on design of mobile robot for autonomous freight transportation. J. Korean Inst. Intell. Syst. 2013, 23, 202–207. [Google Scholar]
- Murai, R.; Sakai, T.; Kawano, H.; Matsukawa, Y.; Kitano, Y.; Honda, Y.; Campbell, K.C. A novel visible light communication system for enhanced control of autonomous delivery robots in a hospital. In Proceedings of the 2012 IEEE/SICE International Symposium on System Integration (SII), Fukuoka, Japan, 16–18 December 2012; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2012; pp. 510–516. [Google Scholar]
- Hesch, J.A.; Mariottini, G.L.; Roumeliotis, S.I. Descending-stair detection, approach, and traversal with an autonomous tracked vehicle. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA; 2011; pp. 5525–5531. [Google Scholar]
- Takahashi, M.; Suzuki, T.; Shitamoto, H.; Moriguchi, T.; Yoshida, K. Developing a mobile robot for transport applications in the hospital domain. Robot. Auton. Syst. 2010, 58, 889–899. [Google Scholar] [CrossRef]
- Bouguerra, A.; Andreasson, H.; Lilienthal, A.J.; Åstrand, B.; Rögnvaldsson, T. An autonomous robotic system for load transportation. In Proceedings of the 2009 IEEE Conference on Emerging Technologies Factory Automation, Palma de Mallorca, Spain, 22–25 September 2009; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2010; pp. 1–4. [Google Scholar]
- McNulty, D.; Hennessy, A.; Li, M.; Armstrong, E.; Ryan, K.M. A review of Li-ion batteries for autonomous mobile robots: Perspectives and outlook for the future. J. Power Source 2022, 545, 231943. [Google Scholar] [CrossRef]
- Sahu, B.; Das, P.K.; Kabat, M.R.; Kumar, R. Prevention of COVID-19 affected patient using multi robot cooperation and Q-learning approach: A solution. Qual. Quant. 2022, 56, 793–821. [Google Scholar] [CrossRef] [PubMed]
- Da Costa Barros, Í.R.; Nascimento, T.P. Robotic mobile fulfillment systems: A survey on recent developments and research opportunities. Robot. Auton. Syst. 2021, 137, 103729. [Google Scholar] [CrossRef]
- Hamdy, W.; Mostafa, N.; Elawady, H. Towards a smart warehouse management system. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Paris, France, 26–27 July 2018. [Google Scholar]
- He, Z.; Aggarwal, V.; Nof, S.Y. Differentiated service policy in smart warehouse automation. Int. J. Prod. Res. 2018, 56, 6956–6970. [Google Scholar] [CrossRef]
- Bolu, A.; Korçak, Ö. Adaptive task planning for multi-robot smart warehouse. IEEE Access 2021, 9, 27346–27358. [Google Scholar] [CrossRef]
- Gupta, S.; Shekhar, S.; Karpe, K.; Ghosh, A.; Js, G.; Srinivas, P.; Sinha, A.; Singh, K.; Ramamoorthy, K.; Dhanalakshmi, S. LOGISWARM: A low-cost multi-robot testbed for cooperative transport research. Multimed. Tools Appl. 2022, 81, 27339–27362. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, F.; Tang, L.; Bai, C.; Liu, L. Multirobot Adaptive Task Allocation of Intelligent Warehouse Based on Evolutionary Strategy. J. Sens. 2022, 2022, 1–9. [Google Scholar] [CrossRef]
- Kadir, M.A.; Chowdhury, M.B.; Rashid, J.A.; Shakil, S.R.; Rhaman, M.K. An autonomous industrial robot for loading and unloading goods. In Proceedings of the 2015 International Conference on Informatics, Electronics Vision (ICIEV), Fukuoka, Japan, 15–18 June 2015; pp. 1–6. [Google Scholar]
- Tagliavini, L.; Baglieri, L.; Colucci, G.; Botta, A.; Visconte, C.; Quaglia, G. DOT PAQUITOP, an Autonomous Mobile Manipulator for Hospital Assistance. Electronics 2023, 12, 268. [Google Scholar] [CrossRef]
- Dömel, A.; Kriegel, S.; Kaßecker, M.; Brucker, M.; Bodenmüller, T.; Suppa, M. Toward fully autonomous mobile manipulation for industrial environments. Int. J. Adv. Robot. Syst. 2017, 14, 1729881417718588. [Google Scholar] [CrossRef]
- Mason, M.T.; Rodriguez, A.; Srinivasa, S.S.; Vazquez, A.S. Autonomous manipulation with a general-purpose simple hand. Int. J. Robot. Res. 2012, 31, 688–703. [Google Scholar] [CrossRef]
- Righetti, L.; Kalakrishnan, M.; Pastor, P.; Binney, J.; Kelly, J.; Voorhies, R.C.; Sukhatme, G.; Schaal, S. An autonomous manipulation system based on force control and optimization. Auton. Robot. 2014, 36, 11–30. [Google Scholar] [CrossRef]
- Rambow, M.; Schauß, T.; Buss, M.; Hirche, S. Autonomous manipulation of deformable objects based on teleoperated demonstrations. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2013; pp. 2809–2814. [Google Scholar]
- Katz, D.; Venkatraman, A.; Kazemi, M.; Bagnell, J.A.; Stentz, A. Perceiving, learning, and exploiting object affordances for autonomous pile manipulation. Auton. Robot. 2014, 37, 369–382. [Google Scholar] [CrossRef]
- Kyberd, P.J.; Chappell, P.H. Characterization of an optical and acoustic touch and slip sensor for autonomous manipulation. Meas. Sci. Technol. 1992, 3, 969. [Google Scholar] [CrossRef]
- Alambeigi, F.; Wang, Z.; Hegeman, R.; Liu, Y.H.; Armand, M. Autonomous data-driven manipulation of unknown anisotropic deformable tissues using unmodelled continuum manipulators. IEEE Robot. Autom. Lett. 2018, 4, 254–261. [Google Scholar] [CrossRef]
- Prats, M.; Garcia, J.C.; Fernandez, J.J.; Marin, R.; Sanz, P.J. Advances in the specification and execution of underwater autonomous manipulation tasks. In Proceedings of the OCEANS 2011 IEEE-Spain, Santander, Spain, 6–9 June 2011; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2011; pp. 1–5. [Google Scholar]
- Marani, G.; Choi, S.K.; Yuh, J. Underwater autonomous manipulation for intervention missions AUVs. Ocean. Eng. 2009, 36, 15–23. [Google Scholar] [CrossRef]
- Cieslak, P.; Ridao, P.; Giergiel, M. Autonomous underwater panel operation by GIRONA500 UVMS: A practical approach to autonomous underwater manipulation. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; IEEE: Red Hook, NY, USA, 2015; pp. 529–536. [Google Scholar]
- Ramos-Garijo, R.; Prats, M.; Sanz, P.J.; Del Pobil, A.P. An autonomous assistant robot for book manipulation in a library. In Proceedings of the SMC’03 Conference Proceedings, 2003 IEEE International Conference on Systems, Man and Cybernetics, Conference Theme-System Security and Assurance (Cat. No. 03CH37483), Washington, DC, USA, 8 October 2003; IEEE: Piscataway, NJ, USA, 2003; Volume 4, pp. 3912–3917. [Google Scholar]
- Axelrod, B.; Huang, W.H. Improving hand-eye calibration for robotic grasping and manipulation. In Proceedings of the 2012 IEEE International Conference on Technologies for Practical Robot Applications (TePRA), Woburn, MA, USA, 23–24 April 2012; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2012; pp. 121–126. [Google Scholar]
- Kumar, S.A.; Chand, R.; Chand, R.P.; Sharma, B. Linear Manipulator: Motion Control of an n-link Robotic Arm Mounted on a Mobile Slider. Heliyon 2023, 9, e12867. [Google Scholar] [CrossRef]
- Meng, X.; Zhu, X. Autonomous Obstacle Avoidance Path Planning for Grasping Manipulator Based on Elite Smoothing Ant Colony Algorithm. Symmetry 2022, 14, 1843. [Google Scholar] [CrossRef]
- Xu, K.; Wang, Z. The design of a neural network-based adaptive control method for robotic arm trajectory tracking. Neural Comput. Appl. 2023, 35, 1–11. [Google Scholar] [CrossRef]
- Ma, H.; Wei, X.; Wang, P.; Zhang, Y.; Cao, X.; Zhou, W. Multi-arm global cooperative coal gangue sorting method based on improved Hungarian algorithm. Sensors 2022, 22, 7987. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Wu, C.; Lin, Y.; Lin, M.; Yoshinaga, T.; Ji, Y. Multi-Robot Systems and Cooperative Object Transport: Communications, Platforms, and Challenges. IEEE Open J. Comput. Soc. 2023, 4, 23–36. [Google Scholar] [CrossRef]
- Wong, C.; Yang, E.; Yan, X.T.; Gu, D. Autonomous robots for harsh environments: A holistic overview of current solutions and ongoing challenges. Syst. Sci. Control. Eng. 2018, 6, 213–219. [Google Scholar] [CrossRef]
- Ghobadpour, A.; Monsalve, G.; Cardenas, A.; Mousazadeh, H. Off-road electric vehicles and autonomous robots in agricultural sector: Trends, challenges, and opportunities. Vehicles 2022, 4, 843–864. [Google Scholar] [CrossRef]
- Srinivas, S.; Ramachandiran, S.; Rajendran, S. Autonomous robot-driven deliveries: A review of recent developments and future directions. Transp. Res. Part E Logist. Transp. Rev. 2022, 165, 102834. [Google Scholar] [CrossRef]
- Aldhaheri, S.; De Masi, G.; Pairet, È.; Ardón, P. Underwater robot manipulation: Advances, challenges and prospective ventures. In Oceans; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar]
- Adurthi, N. Scan Matching-Based Particle Filter for LIDAR-Only Localization. Sensors 2023, 23, 4010. [Google Scholar] [CrossRef] [PubMed]
- Rossi, C.; Caro Zapata, A.; Milosevic, Z.; Suarez, R.; Dominguez, S. Topological Navigation for Autonomous Underwater Vehicles in Confined Semi-Structured Environments. Sensors 2023, 23, 2371. [Google Scholar] [CrossRef]
- Xiang, G.; Dian, S.; Zhao, N.; Wang, G. Semantic-Structure-Aware Multi-Level Information Fusion for Robust Global Orientation Optimization of Autonomous Mobile Robots. Sensors 2023, 23, 1125. [Google Scholar] [CrossRef]
- Schwarting, W.; Alonso-Mora, J.; Rus, D. Planning and decision-making for autonomous vehicles. Annu. Rev. Control. Robot. Auton. Syst. 2018, 1, 187–210. [Google Scholar] [CrossRef]
Refs | Task | Field | Speed | Camera |
---|---|---|---|---|
[16] | Elderly care | Assistance | Real Time | CCD color |
[19] | Augmented walker | Assistance | N/A | N/A |
[24] | Interaction with a group of users | Assistance | Real Time | 2D Axis M1031-W |
[25] | Integration with a group of people | Assistance | Real Time | 2D laser/RGB-D |
[28] | Evaluation of human–robot interaction | Assistance, Rehabilitation | N/A | N/A |
[31] | Autonomous air hockey game | Assistance | Real Time | N/A |
[32] | Workplace inspection | Assistance | 500 Hz | Sony PlayStation Eye |
[33] | Semantic assisted trajectory planning | Assistance | Real Time | 2D laser/RGB-D |
[34] | Health monitoring, complementary care and social support | Assistance, Rehabilitation | Real Time | Thermal/RGB-D |
[35] | Detection, tracking people in their environment | Assistance, Rehabilitation | 100 Hz/7.5 Hz | 2D laser/RGB-D |
[36] | Educational and commercial purposes | Assistance | N/A | 2D laser |
[37] | Social navigation | Assistance | 4Hz | 2D laser/RGB-D |
[38] | Therapy system | Rehabilitation | N/A | RGB-D |
[40] | (3D) vision-based SLAM | Assistance | N/A | RGB-D |
[41] | Robot commercial controlled with joystick | Assistance | Real Time | RGB-D |
[42] | Recovering posture | Assistance, Rehabilitation | N/A | RGB-D |
[43] | Interactive games with people | Assistance | Real time | N/A |
[44] | Recognize gestures | Assistance | Real Time | RGB |
[45] | Face detection | Assistance | 10 fps | N/A |
[46] | Home care | Assistance, Rehabilitation | N/A | RGB-D |
[47] | Recognition of activities | Assistance, Rehabilitation | Real Time | RGB-D |
Changes | Extended Objectives |
---|---|
Energy | Low-cost renewable energy |
Emissions | No environmental impact at the tailpipe |
Safety | Accident-free vehicles |
Congestion | Congestion-free route. Easier parking. |
Affordability | Vehicles suitable for any type of luggage or purpose |
Refs | Radar | Lidar | Speed | Probabilities | Camera |
---|---|---|---|---|---|
[55] | 🗸 | 🗸 | real-time | N/A | 🗸 |
[56] | 🗸 | 🗸 | real-time | 70% | 🗸 |
[61] | X | 🗸 | real-time | 96–100% | 🗸 |
[58] | 🗸 | X | real-time | 93.24% | 🗸 |
[63] | 🗸 | X | N/A | 98% | 🗸 |
[64] | 🗸 | X | real-time | N/A | 🗸 |
[66] | X | X | real-time | 95% | 🗸 |
[67] | 🗸 | X | real-time | 80.8% | 🗸 |
[69] | 🗸 | 🗸 | real-time | N/A | 🗸 |
[70] | 🗸 | 🗸 | N/A | N/A | 🗸 |
[71] | 🗸 | 🗸 | real-time | N/A | 🗸 |
[72] | 🗸 | 🗸 | real-time | N/A | 🗸 |
Refs | Range | Environment | Speed | Camera |
---|---|---|---|---|
[84] | 19.2 Km | Industrial | 5 km/h | 🗸 |
[85] | N/A | Warehouse | 5 km/h | N/A |
[86] | N/A | Industrial | 1.2 m/s | N/A |
[88] | N/A | Industrial | 40 m/min | 🗸 |
[89] | 12 day | Industrial | 45 | X |
[91] | 95.0–137.9 cm | Industrial/home | N/A | 🗸 |
[95] | 7 h | Hospital | 1.0 m/s | 🗸 |
[96] | N/A | Hotel | N/A | 🗸 |
[97] | 1 h | Office | 1.0 m/s | 🗸 |
[98] | N/A | Industrial | N/A | 🗸 |
Refs | Success Rate | Interface | Mechanism | Gripper |
---|---|---|---|---|
[108] | 100% | N/A | ||
[109] | 100% | 🗸 | A two-finger parallel | Push-to-grasp |
[111] | 90.5% | N/A | Cylindrical fingers, circular flat | Push-to-grasp |
[112] | 100% | N/A | Fingers | Push-to-grasp |
[113] | 100% | N/A | Afm probe | Adhesion |
[114] | N/A | 🗸 | Two-finger | Push-to-grasp |
[115] | 80% | N/A | Fingers | Push-to-grasp |
[116] | 100% | N/A | Fingers | Push-to-grasp |
[117] | N/A | 🗸 | EndoWrist | Push-to-grasp |
[118] | N/A | 🗸 | Fingers | Push-to-grasp |
[119] | 100% | 🗸 | Fingers | Push-to-grasp |
[120] | 100% | X | N/A | Push |
[121] | N/A | N/A | Fingers | Push-to-grasp |
[122] | 2015 | X | Fingers | Push-to-grasp |
Refs | Year | Software/Algorithm | Sensors/Adopted | Technique |
---|---|---|---|---|
[16] | 2005 | Tele-presence interface, speech interface, face finding and tracking, navigation | Sonar, touch, position, camera, | Simulation |
[19] | 2003 | Mapping and motion | For position, for components | Simulation |
[24] | 2014 | ROS | ASUS Xtion PRO LIVE, 2D Axis M1031-W, 2D Axis M1031-W | Measurement |
[25] | 2022 | Detecting groups, estimating F-formations, | Laser, camera | Simulation |
[28] | 2011 | Meta-analytic | N/A | Measurement |
[31] | 2019 | localPathCorrection/ localPathCorrection | N/A | Measurement |
[33] | 2019 | RRT | Camera | Measurement |
[34] | 2020 | Innovative perception and interaction capabilities | Monitoring, 2D laser scanners | Measurement/Simulation |
[35] | 2015 | Munkres/ Leg Tracker | Laser, noise | Measurement/Simulation |
[36] | 2020 | ROS | Ultrasonic, s RPLiDAR, IMU, encoder, camera | Simulation |
[37] | 2021 | GMapping/ SLAM | Hokuyo UTM-30LX Laser Rangefinder, RGB-D, noises, camera | Simulation |
[38] | 2016 | SVM/ Random Forest/ AdaBoost | Camera | Measurement |
[40] | 2014 | RANSAC | Laser range finders, sonars, cameras, radars, inertial | Simulation |
[41] | 2019 | Processing-based position/pose | RGB-D, Intel RealSense D435, infra-red, camera | Simulation |
[42] | 2016 | DCSF | Kinect, RGB-D Cameras | Simulation |
[43] | 2010 | CAMSHIFT | LEDs, camera | Measure/Simulation |
[44] | 2016 | DTW | Kinect, vision, camera | Measure |
[45] | 2018 | Tracking, vision algorithm | Camera | Measure |
[46] | 2018 | Pose/skeleton recognition | Laser, accelerometer, camera, microphones, infrared | Simulation |
[47] | 2020 | Particle filter, clustering | RGB-D camera | Simulation |
[48] | 2018 | Safety reasoning and casualty minimization | radar, lidar, cameras, gps, v2x | Simulation |
[61] | 2015 | Improving the efficiency and quality of sensor data fusion | lidar, radar and camera | Measure/Simulation |
[62] | 2007 | Detection/recognition of the sign, tracking | camera | Simulation |
[63] | 2016 | Trained a convolutional neural network (CNN) to map raw pixels | Cameras | Simulation |
[64] | 2009 | LfD | - | Simulation |
[65] | 2019 | Horizon, heuristic | - | Measure/Simulation |
[66] | 2010 | Visual odometry | Camera, GPS | Measure/Simulation |
[67] | 2018 | FollowerStopper | OBD-II, Camera | Simulation |
[68] | 2020 | Vehicle density iteratively, flow-density plots | N/A | Simulation |
[70] | 2017 | 3D perception, state estimation and data fusion, 3D perception, state estimation and data fusion | N/A | Measure/Simulation |
[71] | 2019 | Mapping, mapping, artificial intelligence, planning | Tactile, Tactile, Encoders, Encoders, Ultrasonic, Sonar, Accelerometers, Gyroscopes | Measure/Simulation |
[72] | 2018 | Planning, Dijkstra, Bellman–Ford, Floyd, control | Control, radar, radar | Simulation |
[84] | 2021 | - | Simulation | |
[86] | 2020 | Planning and motion coordination | laser scanner and odometry sensors | Simulation |
[88] | 2008 | Navigational | Proprioceptive and exteroceptive | Simulation |
[90] | 2000 | Spreading activation | CMs, FDs | Simulation |
[91] | 2006 | Evolutionary | Exteroceptive, proprioceptive | Simulation |
[92] | 1993 | Decentralized | Force | Measure |
[83] | 2002 | Control | Trajectory | Simulation |
[94] | 2013 | - | Ultrasonic sensor, RFID, QR-code and camera sensor | Simulation |
[95] | 2012 | - | LRF, Camera | Simulation |
[96] | 2010 | Far approach, Near-approach, Stair alignment, Stair traversal | Inertial, Camera | Simulation |
[97] | 2010 | Path planning, virtual potential field | LRF, ultrasonic, stereo vision | Simulation |
[88] | 2009 | Fitting, detection | N/A | N/A |
[109] | 2017 | Perception, Planner | Actuators, RBG-Leds, pose, accelerometers | Simulation |
[110] | 2012 | Autonomous manipulation | Actuators, kinesthetic | Simulation |
[111] | 2014 | Newton–Euler | Barrett, Barrett WAM | Measure/Simulation |
[112] | 2014 | Segmentation | RGB-D camera, Kinect, 3-D noise, orce/torque | Measure |
[113] | 2014 | RGB-D | Facet detection, segmentation | Simulation |
[115] | 2019 | Control, visual tracking, Lucas–Kanad | camera | Simulation |
[116] | 2011 | Planning, visual tracking | cameras | Simulation |
[117] | 2009 | Controls | Depth, f orce/torque, orce/torque | Simulation/Measure |
[118] | 2015 | Panel localisation, vision | navigatio, video camera, sound velocit | Simulation/Measure |
[119] | 2003 | Detection, grasping | force and visual | Simulation |
[103] | 2015 | ICP, perception | Coordinates, Calibration | Simulation/Measure |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misaros, M.; Stan, O.-P.; Donca, I.-C.; Miclea, L.-C. Autonomous Robots for Services—State of the Art, Challenges, and Research Areas. Sensors 2023, 23, 4962. https://doi.org/10.3390/s23104962
Misaros M, Stan O-P, Donca I-C, Miclea L-C. Autonomous Robots for Services—State of the Art, Challenges, and Research Areas. Sensors. 2023; 23(10):4962. https://doi.org/10.3390/s23104962
Chicago/Turabian StyleMisaros, Marius, Ovidiu-Petru Stan, Ionut-Catalin Donca, and Liviu-Cristian Miclea. 2023. "Autonomous Robots for Services—State of the Art, Challenges, and Research Areas" Sensors 23, no. 10: 4962. https://doi.org/10.3390/s23104962
APA StyleMisaros, M., Stan, O. -P., Donca, I. -C., & Miclea, L. -C. (2023). Autonomous Robots for Services—State of the Art, Challenges, and Research Areas. Sensors, 23(10), 4962. https://doi.org/10.3390/s23104962